首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   19篇
  国内免费   4篇
测绘学   7篇
大气科学   25篇
地球物理   68篇
地质学   131篇
海洋学   41篇
天文学   45篇
综合类   1篇
自然地理   32篇
  2024年   1篇
  2022年   6篇
  2021年   4篇
  2020年   10篇
  2019年   8篇
  2018年   11篇
  2017年   14篇
  2016年   15篇
  2015年   12篇
  2014年   18篇
  2013年   23篇
  2012年   22篇
  2011年   34篇
  2010年   16篇
  2009年   24篇
  2008年   27篇
  2007年   14篇
  2006年   14篇
  2005年   8篇
  2004年   15篇
  2003年   12篇
  2002年   4篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   4篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1985年   3篇
  1984年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有350条查询结果,搜索用时 640 毫秒
41.
To what extent is tropical variability forced from the North Pacific through ocean pathways relative to locally generated variability and variability forced through the atmosphere? To address this question, in this study we use an anomaly-coupled model, consisting of a global, atmospheric general circulation model and a 4½-layer, reduced-gravity, Pacific-Ocean model. Three solutions are obtained; with coupling over the entire basin (CNT), with coupling confined to the tropics and wind stress and heat fluxes in the North and South Pacific specified by climatology (TP), and with coupling confined to the Tropics and wind stress and heat fluxes in the North Pacific specified by output from CNT (NPF). It is found that there are two distinct signals forced in the North Pacific that can impact the tropics through ocean pathways. These two signals are forced by wind stress and surface heat flux anomalies in the subtropical North Pacific. The first signal is relatively fast, impacts tropical variability less than a year after forcing, is triggered from November to March, and propagates as a first-mode baroclinic Rossby wave. The second signal is only triggered during springtime when buoyancy forcing can effectively generate higher-order baroclinic modes through subduction anomalies into the permanent thermocline, and it reaches the equator 4–5 years after forcing. The slow signal is found to initiate tropical variability more efficiently than the fast signal with one standard deviation in subtropical zonal wind stress forcing tropical SST anomalies centered on the equator at 135°W of approximately 0.5°C. Allowing extratropically forced tropical variability is found to shift primarily 2-year ENSO variability in a tropics-alone simulation to a more realistic range of 2–6 years.  相似文献   
42.
Stars on eccentric orbits around a massive black hole (MBH) emit bursts of gravitational waves (GWs) at periapse. Such events may be directly resolvable in the Galactic Centre. However, if the star does not spiral in, the emitted GWs are not resolvable for extragalactic MBHs, but constitute a source of background noise. We estimate the power spectrum of this extreme mass ratio burst background (EMBB) and compare it to the anticipated instrumental noise of the Laser Interferometer Space Antenna (LISA). To this end, we model the regions close to an MBH, accounting for mass segregation, and for processes that limit the presence of stars close to the MBH, such as GW inspiral and hydrodynamical collisions between stars. We find that the EMBB is dominated by GW bursts from stellar mass black holes, and the magnitude of the noise spectrum  ( fS GW)1/2  is at least a factor of ∼10 smaller than the instrumental noise. As an additional result of our analysis, we show that LISA is unlikely to detect relativistic bursts in the Galactic Centre.  相似文献   
43.
Sub-micron scale distributions of trace elements in zircon   总被引:2,自引:1,他引:1  
Sub-micron scale zoning of Ti concentrations and correlations between concentrations of Ti and other trace elements (P, Ce, and Y) and cathodoluminescent (CL) banding is observed in natural zircons. Ion images were made using the Caltech Microanalysis Center’s CAMECA NanoSIMS 50L with an O primary beam focused to ~300 nm on the sample surface. The high spatial resolution of this technique allows for interrogation of chemical variations at or below the scale of CL banding in natural zircons. Images produced in this manner display two types of correlations among Ti, P, Ce, and Y (which appears to be a proxy for CL intensity): strong (correlation coefficients >0.8) and subtle (correlation coefficients ~0.15–0.4). Strongly correlated images, which display Ti variations of ca. a factor of 3 between adjacent CL bands and overall elevated trace element concentrations in CL-dark bands, were found within an oscillatory-zoned, trace element enriched sector of a CL sector-zoned zircon. Three possible causes for such correlations include: temperature-dependent equilibrium partitioning, trace element partitioning limited by diffusion in the host melt and surface-controlled, non-equilibrium growth. Comparison of our data with the expected results of these processes suggests that: (1) Ti partitioning in zircon is dependent upon non-equilibrium effects in addition to temperature and/or (2) the incorporation of elements that co-vary with Ti in zircon (e.g., Y, P and Ce) is also temperature-dependent. Sub-micron scale, high-Ti regions are also found within Proterozoic Adirondack and >4 Ga Jack Hills zircons as well as trace element enrichments (including Ti) along cracks within Jack Hills zircons.  相似文献   
44.
Electromagnetic (EM) investigation depths are larger on Venus than Earth due to the dearth of water in rocks, in spite of higher temperatures. Whistlers detected by Venus Express proved that lightning is present, so the Schumann resonances ~10–40 Hz may provide a global source of electromagnetic energy that penetrates ~10–100 km. Electrical conductivity will be sensitive at these depths to temperature structure and hence thermal lithospheric thickness. Using 1D analytic and 2D numerical models, we demonstrate that the Schumann resonances—transverse EM waves in the ground-ionosphere waveguide—remain sensitive at all altitudes to the properties of the boundaries. This is in marked contrast to other EM methods in which sensitivity to the ground falls off sharply with altitude. We develop a 1D analytical model for aerial EM sounding that treats the electrical properties of the subsurface (thermal gradient, water content, and presence of conductive crust) and ionosphere, and the effects of both random errors and biases that can influence the measurements. We initially consider specified 1D lithospheric thicknesses 100–500 km, but we turn to 2D convection models with Newtonian temperature-dependent viscosity to provide representative vertical and lateral temperature variations. We invert for the conductivity-depth structure and then temperature gradient. For a dry Venus, we find that the error on temperature gradient obtained from any single local measurement is ~100%—perhaps enough to distinguish “thick” vs. “thin” lithospheres. When averaging over thousands of kilometers, however, the standard deviation of the recovered thermal gradient is within the natural variability of the convection models, <25%. A “wet” interior (hundreds of ppm H2O) limits EM sounding depths using the Schumann resonances to <20 km, and errors are too large to estimate lithospheric properties. A 30-km conductive crust has little influence on the dry-interior models because the Schumann penetration depths are significantly larger. We conclude that EM sounding of the interior of Venus is feasible from a 55-km high balloon. Lithospheric thickness can be measured if the upper-mantle water content is low. If H2O at hundreds of ppm is present, the deeper, temperature-sensitive structure is screened, but the “wet” nature of the upper mantle, as well as structure of the upper crust, is revealed.  相似文献   
45.
The history and dynamics of the martian polar deposits (MPD), the largest known water reservoirs on Mars, are of great interest, but estimates of ice grain size are required before detailed modeling can be performed. We clarify the microphysical processes that may control grain size in the MPD. If the MPD are ∼2% dust by mass, the maximum ice grain size is ∼1 mm due to grain boundary pinning by silicate microparticles. Relatively dusty layers in the MPD will have smaller grain sizes. If MPD ice has a very low impurity content and has experienced a significant amount of strain, grains may reach a steady state size of ∼1.5 to 3 mm due to dynamic recrystallization, wherein a steady state grain size is maintained due to the balance of grain growth and destruction during flow. If the near-bed ice in the MPD is warmed close to its melting point and has been extensively sheared, grain sizes at its base may be between 10 and 40 mm, by analogy with warm, dirty, near-bed ice in terrestrial ice sheets.  相似文献   
46.
Global travertine deposition modulated by oscillations in climate   总被引:1,自引:0,他引:1  
Travertine deposits are important records of past fluid flow in the Earth's crust, and document fluid migration through both tectonic activity and changes in climate. While many studies hint at possible relationships between travertine formation and global climate, none have investigated these connections on a global scale. Here we compile 1649 published travertine ages from six continents to test the hypothesis that global and/or regional changes in climate regulate travertine deposition. Peaks in bedded travertine ages occur with main frequencies that correspond to 100‐kyr changes in global climate, where most peaks occur during glacial terminations or interglacial periods, including a large peak that coincides with the Early Holocene climatic optimum. Time–series analysis also suggests a possible connection with 41‐kyr obliquity cycles. At regional scales, many peaks also correspond with local times of high precipitation or wet conditions. This can be attributed to higher groundwater recharge rates, providing the necessary water to form travertine. Many bedded travertine‐depositing systems may therefore be water‐limiting and sufficient CO2 may be present even during times of no travertine deposition. Exceptions to this conclusion are banded vein travertine deposits, which typically form during times of dry climate when water tables are low. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   
47.
48.
Reconstruction of prehistoric tropical cyclone (TC) activity often relies on the identification of distinctive overwash deposits (tempestites) in coastal lagoon sediments. Similar sediment deposits, however, can result from high-energy events other than TCs. In this study we assessed the utility of using the geochemistry of ostracod valves, specifically their stable oxygen isotope composition (δ18O), as a potential validation variable that could reduce the chances of misidentifying an overwash deposit as having been generated by a TC, when in fact it formed from another high-energy depositional process (type 1 error). We applied this technique to a sediment core recovered from Laguna Alejandro, Dominican Republic, which had already been analyzed for other sedimentary TC proxies. Negative δ18O anomalies identified in the ostracod valve stable isotope record are associated with TC deposits and are most easily explained by large influxes of 18O-depleted meteoric waters typical of intense tropical storms. There is potential for this technique to be used to identify TC landfalls that are not represented by overwash deposits. We, however, propose a more conservative approach and suggest this technique be used to validate the origin of a storm deposit and reduce the odds of a type 1 error.  相似文献   
49.
Small, steep watersheds are prolific sediment sources from which sediment flux is highly sensitive to climatic changes. Storm intensity and frequency are widely expected to increase during the 21st century, and so assessing the response of small, steep watersheds to extreme rainfall is essential to understanding landscape response to climate change. During record winter rainfall in 2016–2017, the San Lorenzo River, coastal California, had nine flow peaks representing 2–10‐year flood magnitudes. By the third flood, fluvial suspended sediment showed a regime shift to greater and coarser sediment supply, coincident with numerous landslides in the watershed. Even with no singular catastrophic flood, these flows exported more than half as much sediment as had a 100‐year flood 35 years earlier, substantially enlarging the nearshore delta. Annual sediment load in 2017 was an order of magnitude greater than during an average‐rainfall year, and 500‐fold greater than in a recent drought. These anomalous sediment inputs are critical to the coastal littoral system, delivering enough sediment, sometimes over only a few days, to maintain beaches for several years. Future projections of megadroughts punctuated by major atmospheric‐river storm activity suggest that interannual sediment‐yield variations will become more extreme than today in the western USA, with potential consequences for coastal management, ecosystems, and water‐storage capacity. The occurrence of two years with major sediment export over the past 35 years that were not associated with extremes of the El Niño Southern Oscillation or Pacific Decadal Oscillation suggests caution in interpreting climatic signals from marine sedimentary deposits derived from small, steep, coastal watersheds, to avoid misinterpreting the frequencies of those cycles. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号