首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   483篇
  免费   25篇
  国内免费   6篇
测绘学   1篇
大气科学   49篇
地球物理   138篇
地质学   170篇
海洋学   23篇
天文学   97篇
综合类   1篇
自然地理   35篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   11篇
  2016年   15篇
  2015年   11篇
  2014年   14篇
  2013年   23篇
  2012年   16篇
  2011年   18篇
  2010年   16篇
  2009年   20篇
  2008年   17篇
  2007年   14篇
  2006年   22篇
  2005年   17篇
  2004年   19篇
  2003年   18篇
  2002年   14篇
  2001年   14篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1996年   10篇
  1995年   10篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1985年   7篇
  1984年   10篇
  1983年   9篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1979年   9篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1975年   8篇
  1974年   6篇
  1973年   12篇
  1972年   3篇
  1934年   3篇
排序方式: 共有514条查询结果,搜索用时 680 毫秒
171.
172.
In 1997, the COmet Nucleus TOUR (CONTOUR) was selected byNASA for a new start as part of the Discovery line. In this paper, we review the status of the mission, the mission timeline and the instruments to be flown. Detail is given of the science goals and how they are to be accomplished.  相似文献   
173.
Recently, evapotranspiration has been hypothesized to promote the secondary formation of calcium carbonate year‐round on tree islands in the Everglades by influencing groundwater ions concentrations. However, the role of recharge and evapotranspiration as drivers of shallow groundwater ion accumulation has not been investigated. The goal of this study is to develop a hydrologic model that predicts the chloride concentrations of shallow tree island groundwater and to determine the influence of overlying biomass and underlying geologic material on these concentrations. Groundwater and surface water levels and chloride concentrations were monitored on eight constructed tree islands at the Loxahatchee Impoundment Landscape Assessment (LILA) from 2007 to 2010. The tree islands at LILA were constructed predominately of peat, or of peat and limestone, and were planted with saplings of native tree species in 2006 and 2007. The model predicted low shallow groundwater chloride concentrations when inputs of regional groundwater and evapotranspiration‐to‐recharge rates were elevated, while low evapotranspiration‐to‐recharge rates resulted in a substantial increase of the chloride concentrations of the shallow groundwater. Modeling results indicated that evapotranspiration typically exceeded recharge on the older tree islands and those with a limestone lithology, which resulted in greater inputs of regional groundwater. A sensitivity analysis indicated the shallow groundwater chloride concentrations were most sensitive to alterations in specific yield during the wet season and hydraulic conductivity in the dry season. In conclusion, the inputs of rainfall, underlying hydrologic properties of tree islands sediments and forest structure may explain the variation in ion concentration seen across Everglades tree islands. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
174.
Monin–Obukhov similarity theory (MOST) is commonly used to model the wind-speed profile at altitudes relevant to wind-power production (e.g. 10–200 m). Though reasonably accurate for unstable to weakly stable stratification, this approach becomes less accurate under increasingly stable stratification, largely due to the constant-flux surface layer assumed by MOST becoming shallower than the altitude range of interest. Furthermore, above the surface layer, the Coriolis force has a considerable influence on the wind-speed profile (in particular in the formation of low-level jets) that cannot be modelled using similarity theory. Our goal is to compare the accuracy of alternative extrapolation models that are more physically appropriate above the surface layer. Using data from the 213-m Cabauw meteorological tower in the Netherlands between July 2007 and June 2008, it is shown that MOST is accurate only at low altitudes and low stability, and breaks down at high altitudes and high stability. Local similarity is generally more accurate than MOST across all altitudes and stabilities, though the model requires turbulent flux data at multiple altitudes that is generally impractical. In contrast, a two-layer MOST–Ekman model is found to be comparable to the other models at low stability ranges and considerably more accurate in the high stability range, while requiring only a measure of surface stability and the geostrophic wind.  相似文献   
175.
August Sea Surface Temperatures (aSSTs) based on fossil diatom assemblages are generated with 2?year average resolution from a 230-year-long sediment core (Rapid 21-12B), from the Reykjanes Ridge in the subpolar North Atlantic. The results indicate a warming trend of ~0.5°C of the surface waters at the Reykjanes Ridge for the last 230?years. Superimposed on this warming trend there is a multidecadal to decadal aSST variability of up to 1°C. The interval from the 1770s to the 1830s represents the coldest period, whereas ~1860?C1880 represents the warmest period during the last 230?years. The last 25?years is characterized by a warming trend showing strong decadal aSST variability with several warm years, but also the coldest years since the 1820s. The time of these cold years in the mid-1970s, -1980s and -1990s correspond with the documented great salinity anomalies (GSA) in the North Atlantic suggesting increased fluxes of cold, low-salinity waters from the Arctic during the last decades. The aSST record and the August North Atlantic Oscillation (aNAO) index show similar multidecadal-scale variability indicating a close coupling between the oceanic and atmospheric patterns. The aSST record shows a negative correlation with the aNAO indicating cold aSST during the positive aNAO trend and vice versa. Results suggest that the wind driven variation in volume fluxes of the North Atlantic surface waters could be the major mechanism behind the observed relationship.  相似文献   
176.
The aim of this paper is to compare four different methods for binary classification with an underlying Gaussian process with respect to theoretical consistency and practical performance. Two of the inference schemes, namely classical indicator kriging and simplicial indicator kriging, are analytically tractable and fast. However, these methods rely on simplifying assumptions which are inappropriate for categorical class labels. A consistent and previously described model extension involves a doubly stochastic process. There, the unknown posterior class probability f(·) is considered a realization of a spatially correlated Gaussian process that has been squashed to the unit interval, and a label at position x is considered an independent Bernoulli realization with success parameter f(x). Unfortunately, inference for this model is not known to be analytically tractable. In this paper, we propose two new computational schemes for the inference in this doubly stochastic model, namely the “Aitchison Maximum Posterior” and the “Doubly Stochastic Gaussian Quadrature”. Both methods are analytical up to a final step where optimization or integration must be carried out numerically. For the comparison of practical performance, the methods are applied to storm forecasts for the Spanish coast based on wave heights in the Mediterranean Sea. While the error rate of the doubly stochastic models is slightly lower, their computational cost is much higher.  相似文献   
177.
178.
A general increase in precipitation has been observed in Germany in the last century, and potential changes in flood generation and intensity are now at the focus of interest. The aim of the paper is twofold: a) to project the future flood conditions in Germany accounting for various river regimes (from pluvial to nival-pluvial regimes) and under different climate scenarios (the high, A2, low, B1, and medium, A1B, emission scenarios) and b) to investigate sources of uncertainty generated by climate input data and regional climate models. Data of two dynamical Regional Climate Models (RCMs), REMO (REgional Model) and CCLM (Cosmo-Climate Local Model), and one statistical-empirical RCM, Wettreg (Wetterlagenbasierte Regionalisierungsmethode: weather-type based regionalization method), were applied to drive the eco-hydrological model SWIM (Soil and Water Integrated Model), which was previously validated for 15 gauges in Germany. At most of the gauges, the 95 and 99 percentiles of the simulated discharge using SWIM with observed climate data had a good agreement with the observed discharge for 1961–2000 (deviation within ±10 %). However, the simulated discharge had a bias when using RCM climate as input for the same period. Generalized Extreme Value (GEV) distributions were fitted to the annual maximum series of river runoff for each realization for the control and scenario periods, and the changes in flood generation over the whole simulation time were analyzed. The 50-year flood values estimated for two scenario periods (2021–2060, 2061–2100) were compared to the ones derived from the control period using the same climate models. The results driven by the statistical-empirical model show a declining trend in the flood level for most rivers, and under all climate scenarios. The simulations driven by dynamical models give various change directions depending on region, scenario and time period. The uncertainty in estimating high flows and, in particular, extreme floods remains high, due to differences in regional climate models, emission scenarios and multi-realizations generated by RCMs.  相似文献   
179.
There are many factors and mechanisms capable of influencing and perturbing rainfall in both African and Indian monsoon regions. Using observed data and ensembles of Atmospheric General Circulation Model simulations, evidence is presented that an association between the two systems exists on decadal timescales and the mechanism responsible for this common mode is suggested. Decadal variability of rainfall in the two monsoon systems results from a large scale forcing induced by an interplay of different ocean basins. The emerging pattern is characterized by warmer (cooler) equatorial and cooler (warmer) extratropical regions, more visible in the northern hemisphere. This large scale forcing pattern leads to an upper-level pressure gradient between the equator and the monsoon regions which modifies also the Tropical Easterly Jet, thus providing a potential link between the African and Indian monsoon. The response is baroclinic, therefore at low levels, the pressure gradient reverses and leads to increased (reduced) pressure over the Saharan and Indian region, both being favourable for a weakening (strengthening) of the respective monsoons. Therefore, the predictability of the monsoon trends depends mainly on how well the sea surface temperature modes, which modulate the monsoons variability, can be predicted.  相似文献   
180.
Collisions between planetesimals in the early solar system were a common and fundamental process. Most collisions occurred at an oblique incidence angle, yet the influence of impact angle on heating in collisions is not fully understood. We have conducted a series of shock physics simulations to quantify oblique heating processes, and find that both impact angle and target curvature are important in quantifying the amount of heating in a collision. We find an expression to estimate the heating in an oblique collision compared to that in a vertical incidence collision. We have used this expression to quantify heating in the Rhealsilvia‐forming impact on Vesta, and find that there is slightly more heating in a 45° impact than in a vertical impact. Finally, we apply these results to Monte Carlo simulations of collisional processes in the early solar system, and determine the overall effect of impact obliquity from the range of impacts that occurred on a meteorite parent body. For those bodies that survived 100 Myr without disruption, it is not necessary to account for the natural variation in impact angle, as the amount of heating was well approximated by a fixed impact angle of 45°. However, for disruptive impacts, this natural variation in impact angle should be accounted for, as around a quarter of bodies were globally heated by at least 100 K in a variable‐angle model, an order of magnitude higher than under an assumption of a fixed angle of 45°.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号