首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   486篇
  免费   23篇
  国内免费   6篇
测绘学   1篇
大气科学   49篇
地球物理   138篇
地质学   170篇
海洋学   23篇
天文学   98篇
综合类   1篇
自然地理   35篇
  2021年   6篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   11篇
  2016年   15篇
  2015年   11篇
  2014年   14篇
  2013年   23篇
  2012年   16篇
  2011年   18篇
  2010年   16篇
  2009年   20篇
  2008年   17篇
  2007年   14篇
  2006年   22篇
  2005年   17篇
  2004年   19篇
  2003年   18篇
  2002年   14篇
  2001年   14篇
  2000年   9篇
  1999年   9篇
  1998年   5篇
  1997年   4篇
  1996年   10篇
  1995年   10篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   5篇
  1987年   7篇
  1985年   7篇
  1984年   10篇
  1983年   9篇
  1982年   4篇
  1981年   3篇
  1980年   6篇
  1979年   9篇
  1978年   7篇
  1977年   5篇
  1976年   6篇
  1975年   8篇
  1974年   6篇
  1973年   12篇
  1972年   3篇
  1934年   3篇
排序方式: 共有515条查询结果,搜索用时 15 毫秒
51.
An intermediate complexity atmospheric general circulation model has been used to investigate the influence of the South Atlantic Ocean (SAO) dipole (SAOD) on summer precipitation over the Guinea Coast of West Africa. Two ensemble integrations in which idealized but realistic SAOD-type sea surface temperature (SST) anomaly is prescribed only in the SAO, and then globally are performed and inter-compared. Consistently, above (below) the average precipitation is simulated over the Guinea Coast during the positive (negative) phase of the SAOD. Comparison of the two set of experiments reveal that in its active years, the SAOD is a dominant mechanism that shapes the spatial character of summer precipitation at the Guinea coast, the global SST variability merely slightly moderate its effects. During the SAOD, cool SST anomaly in the extra-tropical SAO off the Brazil–Uruguay–Argentina coast gives rise to suppressed convection and mass divergence. In turn, the subsidence tends to amplify the sub-tropical arm of anomalous Hadley-type circulation and consequently large scale convection and mass flux convergence in the equatorial Atlantic Ocean/Gulf of Guinea region bordering on the coastal fringes of West Africa. Precipitation is therefore increased at the Guinea Coast.  相似文献   
52.
53.
Flach GP  Crisman SA  Molz FJ 《Ground water》2004,42(6-7):815-828
Subgrid modeling of some type is typically used to account for heterogeneity at scales below the grid scale. The single-domain model (SDM), employing field-scale dispersion, and the dual-domain model (DDM), employing local hydrodynamic dispersion and exchange between domains having large hydraulic conductivity contrasts, are well-known examples. In this paper, the two modeling approaches are applied to tritium migration from the H-area seepage basins to a nearby stream--Fourmile Branch--at the Savannah River Site. This location has been monitored since 1955, so an extensive dataset exists for formulating realistic simulations and comparing the results to data. It is concluded that the main parameters of both models are scale-dependent, and methods are discussed for making initial estimates of the DDM parameters, which include mobile/immobile porosities and the mass exchange coefficient. Both models were calibrated to produce the best fit to recorded tritium data. When various attributes of the dataset were considered, including cumulative tritium activity discharged to Fourmile Branch, plume arrival time, and plume attenuation due to closure of the seepage basins in 1988, the DDM produced results superior to the SDM, while causing no unrealistic upgradient dispersion. A sensitivity analysis showed that only the DDM was able to accurately produce both the instantaneous activity discharge and cumulative activity with a single parameter set. This is thought to be due to the advection-dominated nature of transport in natural porous media and the more realistic treatment of this type of transport in the DDM relative to the SDM.  相似文献   
54.
Predicting the future DOC flux from upland peat catchments   总被引:6,自引:0,他引:6  
  相似文献   
55.
56.
In examining ship-mediated biological invasions, most research and treatment development has focused on ballast water. Another vector that has gained attention recently is vessels arriving in a "no ballast on board" (NOBOB) condition. Such ships retain relatively small, unpumpable volumes of water and sediment in their ballast tanks. Nonetheless, these unpumpable portions can represent great ecological risk. This scenario is relevant in the Great Lakes, which have experienced a dramatic series of introductions, despite most vessels arriving there as NOBOBs since 1994. We examined shipping patterns of NOBOBs arriving to lower Chesapeake Bay to begin evaluating their risk of biopollution. Only 14% of ships arrive as NOBOBs, and of those, 17% depart to another port in the upper bay. Most NOBOBs arrive from or leave for other US ports; proximate trans-Atlantic crossings are few. Given the nature of their operations, we conclude NOBOBs may represent a risk for aquatic nuisance species invasions to Chesapeake Bay.  相似文献   
57.
Whilst all ecosystems must obey the second law of thermodynamics, these physical bounds and controls on ecosystem evolution and development are largely ignored across the ecohydrological literature. To unravel the importance of these underlying restraints on ecosystem form and function, and their power to inform our scientific understanding, we have calculated the entropy budget of a range of peat ecosystems. We hypothesize that less disturbed peatlands are ‘near equilibrium’ with respect to the second law of thermodynamics and thus respond to change by minimizing entropy production. This ‘near equilibrium’ state is best achieved by limiting evaporative losses. Alternatively, peatlands ‘far-from-equilibrium’ respond to a change in energy inputs by maximizing entropy production which is best achieved by increasing evapotranspiration. To test these alternatives this study examined the energy balance time series from seven peatlands across a disturbance gradient. We estimate the entropy budgets for each and determine how a change in net radiation (ΔRn) was transferred to a change in latent heat flux (ΔλE). The study showed that: (i) The transfer of net radiation to latent heat differed significantly between peatlands. One group transferred up to 64% of the change in net radiation to a change in latent heat flux, while the second transferred as little as 27%. (ii) Sites that transferred the most energy to latent heat flux were those that produced the greatest entropy. The study shows that an ecosystem could be ‘near equilibrium’ rather than ‘far from equilibrium’.  相似文献   
58.
Some previous studies demonstrated that model bias has a strong impact on the quality of long-term prognostic model simulations of the sub-polar North Atlantic Ocean. Relatively strong bias of water mass characteristics is observed in both eddy-permitting and eddy-resolving simulations, suggesting that an increase of model resolution does not reduce significantly the model bias. This study is an attempt to quantify the impact of model bias on the simulated water mass and circulation characteristics in an eddy-permitting model of the sub-polar ocean. This is done through comparison of eddy-permitting prognostic model simulations with the results from two other runs in which the bias is constrained by using spectral nudging. In the first run, the temperature and salinity are nudged towards climatology in the whole column. In the second run, the spectral nudging is applied in the surface 30 m layer and at depths below 560 m only. The biases of the model characteristics of the unconstrained run are similar to those reported in previous eddy-permitting and eddy-resolving studies. The salinity in the surface and intermediate waters of the Labrador Sea waters increases with respect to the climatology, which reduces the stability of the water column. The deep convection in the unconstrained run is artificially intensified and the transport in the sub-polar gyre stronger than in the observations. In particular, the transport of relatively salty and warm Irminger waters into the Labrador Sea is unrealistically high. While the water mass temperature and salinity in the run with spectral nudging in the whole column are closest to the observations, the depth of the winter convection is underestimated in the model. The water mass characteristics and water transport in the run with spectral nudging in the surface and deep layers only are close to observations and at the same time represent well the deep convection in terms of its intensity and position. The source of the bias in the prognostic model run is discussed.  相似文献   
59.
A study using multiple techniques provided insight into tectonic influences on ground water systems; the results can help to understand ground water systems in the tectonically active western United States and other parts of the world. Ground water in the San Bernardino Valley (Arizona, United States and Sonora, Mexico) is the main source of water for domestic use, cattle ranching (the primary industry), and the preservation of threatened and endangered species. To improve the understanding of ground water occurrence, movement, and sustainability, an investigation was conducted using a number of complementary methods, including major ion geochemistry, isotope hydrology, analysis of gases dissolved in ground water, aquifer testing, geophysics, and an examination of surface and subsurface geology. By combining information from multiple lines of investigation, a more complete picture of the basin hydrogeology was assembled than would have been possible using fewer methods. The results show that the hydrogeology of the San Bernardino Valley is markedly different than that of its four neighboring basins in the United States. The differences include water quality, chemical evolution, storage, and residence time. The differences result from the locally unique geology of the San Bernardino Valley, which is due to the presence of a magmatically active accommodation zone (a zone separating two regions of normal faults with opposite dips). The geological differences and the resultant hydrological differences between the San Bernardino Valley and its neighboring basins may serve as a model for the distinctive nature of chemical evolution of ground water in other basins with locally distinct tectonic histories.  相似文献   
60.
This study has hypothesized that for many rivers the trade-off between flow accumulation and the decrease in slope along channel length means that stream power increases downstream and, moreover, that given the low slope angles in headwater and low-order streams, they would have insufficient stream power to erode let alone transport sediment. The study considered the stream power profile, the particle travel distances and the application of the Hjulström curve based on the velocity profile of nine, large UK catchments. The study showed that:
  1. Some rivers never showed a maximum in their longitudinal stream power profile, implying that some rivers never develop a deposition zone before they discharge at the tidal limit.
  2. Particle travel distances during a bankfull discharge event showed that for some rivers 91% of the upper main channel would not be cleared of sediment. Furthermore, while some rivers could transport a 2 mm particle their entire length in one bankfull event, for another river it would take 89 such events.
  3. The Hjulström curve shows that for three of the study rivers the upper 20 km of the river was not capable of eroding a 2 μm particle.
  4. The study has shown that for all rivers studied, erosion is focused downstream and deposition upstream. Many UK rivers have a dead zone where, on time scales of the order of centuries, no erosion or transport occurs and erosion only occurs in the lower courses of the channel where discharge rather than slope dominates – we propose these as underpowered rivers.
© 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号