首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24679篇
  免费   182篇
  国内免费   932篇
测绘学   1413篇
大气科学   2001篇
地球物理   4580篇
地质学   11689篇
海洋学   1032篇
天文学   1678篇
综合类   2164篇
自然地理   1236篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   4767篇
  2017年   4041篇
  2016年   2585篇
  2015年   243篇
  2014年   87篇
  2013年   36篇
  2012年   995篇
  2011年   2756篇
  2010年   2028篇
  2009年   2329篇
  2008年   1908篇
  2007年   2380篇
  2006年   64篇
  2005年   207篇
  2004年   421篇
  2003年   417篇
  2002年   257篇
  2001年   54篇
  2000年   60篇
  1999年   17篇
  1998年   25篇
  1997年   7篇
  1996年   4篇
  1994年   3篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   4篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   4篇
  1982年   3篇
  1981年   23篇
  1980年   22篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   8篇
  1975年   1篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
  1964年   1篇
排序方式: 共有10000条查询结果,搜索用时 13 毫秒
121.
The geomorphological environment is one of the most fundamental variables af-fecting the development of human society.The mission of geomorphological environment research is to explore the most basic environment and features of our Earth’s surface mor-phology.The results can be applied to resource evaluation,environmental protection and reducing and preventing geological disasters.Thus,it can serve to help achieve sustainable development.This paper examines the Shenzhen east coastal zone as a case strongly in-fluenced by urban expansion.We use modern geomorphological theory and methods,along with GIS and RS techniques,to reveal key characteristics of the geomorphological environ-ment and landform classification.Furthermore,coastal ecosystem evaluation and regional resources sustainable utilization should be considered relative to the corresponding geo-morphological environment.Based on this study,we conclude that modern geomorphological theory and methods,supported by "3S" techniques including GIS,RS and GPS,can play an important role in resolving the environment,resources and population problems as well as sustainable development challenges facing humankind at present.  相似文献   
122.
Urban heat island (UHI) effect has a close relation to land covers type. This paper investigates the relationship between land cover ratio and UHI in Guangzhou, south of China using remote sensing and automatic weather stations data. The temperature data were obtained by Automatic weather stations (AWS) of Guangzhou in October, 2004, at the same time with the CBERS remote sensing image acquired. Firstly, the hourly mean temperature was computed from hourly AWS data. Secondly, the CBERS remote sensing image was classified using support vector machine (SVM) and land covers classification were output. Thirdly, the classification result was overlapped with a round buffer with 1.5 KM radius centered on the AWS, and then the land cover ratio, Edge Density (ED) and Mean Fractal Dimension (MFRACT) of buffers were computed out. Finally, the correlation coefficient between hourly mean temperature and land cover ratio, ED and MFRACT was calculated. It concluded that UHI intensity was heavier during nighttime than daytime. Stations with higher vegetation ratio and higher ED had lower heat island effect. On the contrary, stations with higher impervious ratio and lower ED had more serious heat island effect. The positive–negative of correlation coefficient between hourly mean temperature and vegetation ratio during 11:00–17:00 h (local time) was opposite to that during other time. ED was negatively correlated with hourly mean temperature except during 11:00–17:00 h. On the contrary, MFRACT was positively correlated with hourly mean temperature. It implied that fragmentations of patches were favorable to UHI alleviation, and complexities of patch were unfavorable factors.  相似文献   
123.
Application scope of geostatistics has been gradually extended from original geologic field to soil science and ecological field, etc. and its successful application results have been widely demonstrated. But little information is reported as to the direct use of geostatistical method to work out the distribu- tion map of groundwater characteristics. In this paper the semivariogram of geostatistics, in combina- tion with GIS, was used to quantitatively study the spatial variation characteristics of groundwater table depth and mineralization degree and their relation to the landuse changes. F test of the used spherical model reached a very significant level, and the theoretical model can well reflect the spatial structural characteristics of groundwater table depth and mineralization degree and achieve an ideal result. This shows that the application of the method in the dynamical simulation of groundwater is feasible. And this paper also provides useful reference for the application of geostatistics in the study of the dy- namical variations of groundwater resources in the oasis.  相似文献   
124.
Global climate change is having long-term impacts on the geographic distribution of forest species. However, the response of vertical belts of mountain forests to climate change is still little known. The vertical distribution of forest vegetation(vertical vegetation belt) on Gongga Mountain in Southwest China has been monitored for 30 years. The forest alternation of the vertical vegetation belt under different climate conditions was simulated by using a mathematical model GFSM(the Gongga Forest Succession Model). Three possible Intergovernmental Panel on Climate Change(IPCC) climate scenarios(increase of air temperature and precipitation by 1.8℃/5%, 2.8℃/10% and 3.4℃/15% for B_1, A_1B and A_2 scenarios, respectively) were chosen to reflect lower, medium and higher changes of global climate. The vertical belts of mountainous vegetation will shift upward by approximately 300 m, 500 m and 600 m in the B_1, A_1B and A_2 scenarios, respectively, according to the simulated results. Thus, the alpine tree-line will move to a higher altitude. The simulation also demonstrated that, in a changing climate, the shift in the vegetation community will be a slow and extended process characterized by two main phases. During the initial phase, trees of the forest community degrade or die, owing to an inability to adapt to a warmer climate. This results in modest environment for the introduction of opportunistic species, consequently, the vegetation with new dominant tree species becomes predominant in the space vacated by the dead trees at the expense of previously dominated original trees as the succession succeed and climate change advance. Hence, the global climate change would dramatically change forest communities and tree species in mountainous regions because that the new forest community can grow only through the death of the original tree. Results indicated that climate change will cause the change of distribution and composition of forest communities on Gongga Mountain, and this change may enhance as the intensity of climate change increases. As a result, the alternation of death and rebirth would finally result in intensive landscape changes, and may strongly affect the eco-environment of mountainous regions.  相似文献   
125.
By using the Arctic runoff data from R-ArcticNET V4.0 and ArcticRIMS, trends of four major rivers flowing into the Arctic Ocean, whose climate factor plays an important role in determining the variability of the Arctic runoff, are investigated. The results show that for the past 30 years, the trend of the Arctic runoff is seasonally dependent. There is a significant trend in spring and winter and a significant decreasing trend in summer, leading to the reduced seasonal cycle. In spring, surface air temperature is the dominant factor influencing the four rivers. In summer, precipitation is the most important factor for Lena and Mackenzie, while snow cover is the most important factor for Yenisei and Ob. For Mackenzie, atmospheric circulation does play an important role for all the seasons, which is not the case for the Eurasian rivers. The authors further discuss the relationships between the Arctic runoff and sea ice. Significant negative correlation is found at the mouth of the rivers into the Arctic Ocean in spring, while significant positive correlation is observed just at the north of the mouths of the rivers into the Arctic in summer. In addition, each river has different relationship with sea ice in the eastern Greenland Sea.  相似文献   
126.
Combined analyses of pollen, seeds, woods, micro-charcoal and non-pollen palynomorphs from Stagno di Maccarese, an artificially dried out coastal basin north of the Tiber delta now occupied by the Fiumicino Airport (Rome, Italy), document marked vegetation and environmental changes during the last 8300 years. Between 8300 and 5400 cal. a BP dense mixed deciduous and evergreen forests surrounded a eutrophic freshwater basin. An abrupt change around 5400 cal. a BP marks the transition to a marshy environment, due to a lowering of the water table. An increase of cereals and micro-charcoals matches the presence of a nearby Eneolithic settlement. Between 5100 and 2900 cal. a BP there is a remarkable expansion of riparian trees, indicating an increase of the water level. Between 2900 and 2000 cal. a BP, a new development of marshlands points to a progressive lowering of the lake. After 2000 cal. a BP, during the Roman exploitation of the area, an expansion of arboreal vegetation is recorded, characterized by evergreen and deciduous oak-dominated forests, while an extensive chenopods marshland matches the presence of saltworks. On the whole, the Stagno di Maccarese area appears very unstable, due to changes in lake level, introgression of marine water, eutrophic phases, flood events, desiccations and openings of the forest vegetation.  相似文献   
127.
Nondimensionalization of variables enables us to treat experiment data much more simply and efficiently by decreasing the number of variables. In some cases, trivial conclusions (which Kenney, 1982, called spurious self-correlation) result from a formal application of dimensional analyses. In contrast, in some cases fully significant conclusions can be derived. We first discuss how to construct nondimensional variables retaining the physical meanings of variables. We then propose simple and efficient methods, especially the use of “spurious triangle (SpT)”, to discriminate between significant conclusions and spurious self-correlations in the analysis of nondimensionalized variables.  相似文献   
128.
High-resolution geochemical analysis of a 6-m-long sediment core from Zoñar Lake, southern Spain, provides a detailed characterization of major changes in lake and watershed processes during the last 4,000 years. Geochemical variables were used as paleolimnological indicators and complement Zoñar Lakes’s paleoenvironmental reconstruction based on sedimentological and biological proxies, which define periods of increasing allochthonous input to the lake and periods of dominant autochthonous sedimentation. Chemical ratios identify periods of endogenic carbonate formation (higher Ca/Al, Sr/Al and Ba/Al ratios), evaporite precipitation (higher S/Al, Sr/Al ratios), and anoxic conditions (higher Mo/Al, U/Th ratios and Eu anomaly). Higher productivity is marked by elevated organic carbon content and carbonate precipitation (Mg/Ca). Hydrological reconstruction for Zoñar Lake was based on sedimentological, mineralogical and biological proxies, and shows that lower lake levels are characterized by Sr-rich sediments (a brackish lake with aragonite) and S-rich sediments (a saline lake with gypsum), while higher lake levels are characterized by sediments enriched in elements associated with alumino-silicates (Al, K, Ti, Fe, trace and rare earth elements), reflecting fresher conditions. Geochemical indicators also mark periods of higher detrital input to the lake related to human activity in the watershed: (1) during the Iberian Roman Humid Period (650 BC–AD 300), around the onset of the Little Ice Age (AD 1400), during the relatively drier Post-Roman and Middle Ages (AD 800–1400), and over the last 50 years, due to mechanized farming practices. Heavy metal enrichment in the sediments (Cu and Ni) suggests intensification of human activities during the Iberian Roman Period, and the use of fertilizers during the last 50 years.  相似文献   
129.
Power spectra of segmentation-cell length (a dominant length scale of EUV emission in the transition region) from full-disk He?ii extreme ultraviolet (EUV) images observed by the Extreme ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO) and the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) during periods of quiet-Sun conditions for a time interval from 1996 to 2015 were analyzed. The spatial power as a function of the spatial frequency from about 0.04 to 0.27 (EIT) or up to 0.48 (AIA) Mm?1 depends on the distribution of the observed segmentation-cell dimensions – a structure of the solar EUV network. The temporal variations of the spatial power reported by Didkovsky and Gurman (Solar Phys. 289, 153, 2014) were suggested as decreases at the mid-spatial frequencies for the compared spectra when the power curves at the highest spatial frequencies of 0.5 pix?1 were adjusted to match each other. This approach has been extended in this work to compare spectral ratios at high spatial frequencies expressed in the solar spatial frequency units of Mm?1. A model of EIT and AIA spatial responses allowed us to directly compare spatial spectral ratios at high spatial frequencies for five years of joint operation of EIT and AIA, from 2010 to 2015. Based on this approach, we represent these ratio changes as a long-term network transformation that may be interpreted as a continuous dissipation of mid-size network structures to the smaller-size structures in the transition region. In contrast to expected cycling of the segmentation-cell dimension structures and associated spatial power in the spectra with the solar cycle, the spectra demonstrate a significant and steady change of the EUV network. The temporal trend across these structural spectra is not critically sensitive to any long-term instrumental changes, e.g. degradation of sensitivity, but to the change of the segmentation-cell dimensions of the EUV network structure.  相似文献   
130.
Rill formation is the predominant erosion process in slope land in the Loess Plateau, China. This study was conducted to investigate rill erosion characteristics and their effects on runoff and sediment yielding processes under different slope gradients at a rate of 10°, 15°, 20° and 25° with rainfall intensity of 1.5 mm min-1 in a laboratory setting. Results revealed that mean rill depth and rill density has a positive interrelation to the slope gradient. To the contrary, width-depth ratio and distance of the longest rill to the top of the slope negatively related to slope gradient. All these suggested that increasing slope steepness could enhance rill headward erosion, vertical erosion and the fragmentation of the slope surface. Furthermore,total erosion tended to approach a stable maximum value with increasing slope, which implied that there is probably a threshold slope gradient where soil erosion begins to weaken. At the same time, the correlation analysis showed that there was a close connection between slope gradient and the variousindices of soil erosion: the correlation coefficients of slope gradient with maximal rill depth, number of rills and the distance of the longest rill from the top of the slope were 0.98, 0.97 and-0.98, respectively,indicating that slope gradient is the major factor of affecting the development of rills. Furthermore,runoff was not sensitive to slope gradient and rill formation in this study. Sediment concentration,however, is positively related to slope gradient and rill formation, the sediment concentrations increased rapidly after rill initiation, especially. These results may be essential for soil loss prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号