首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   4篇
测绘学   1篇
大气科学   1篇
地球物理   19篇
地质学   38篇
海洋学   11篇
天文学   24篇
自然地理   13篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   6篇
  2011年   1篇
  2010年   4篇
  2009年   5篇
  2008年   5篇
  2007年   2篇
  2006年   8篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1996年   1篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   2篇
  1973年   1篇
排序方式: 共有107条查询结果,搜索用时 11 毫秒
51.
Felsic lavas or rheomorphic ignimbrites: is there a chemical distinction?   总被引:3,自引:0,他引:3  
In the environment of felsic magma generation associated with continental flood basalt (CFB) provinces there is a close association between magma composition, phenocryst assemblage, temperature and eruption mechanism. In this paper we propose that by examining the chemical composition and, in particular the high field strength element (Zr and Nb) contents of the high silica rocks, we can identify those that contained halogen-rich volatiles and which degassed at different levels (deep versus shallow). The degassing depth has a direct influence on the type of eruption, with shallow degassing promoting explosive rather than effusive behaviour and consequentially the former is more likely to give rise to ignimbrites. Thus, we can infer likely eruption mechanisms, as high concentrations of F and Cl dramatically decrease magma viscosities and should favour deep degassing and hence promote lava effusion rather than explosive pyroclastic eruption. This hypothesis is tested by constraining the other possible variables which have an effect on the mode of eruption, and by examining the nature and composition of melt and fluid inclusions in quartz from CFB-associated felsic volcanic rocks.  相似文献   
52.
As conventional oil and gas reservoirs become depleted other unconventional energy sources have to be recovered and produced. Four of the major unconventional resources that are strategic for North American interests are heavy oil, oil sands, oil shales, and coal-bed methane. Recent interest and activity in Canada’s vast oil sands are progressing rapidly as soaring oil prices are fueling a ‘gold rush’ in oil sands development in Alberta. This interest is evident by the record-number of oil sands and heavy oil presentations at Energy Minerals Division (EMD)-sponsored sessions at the 2004 and 2005 Annual Conventions of the American Association of Petroleum Geologists (AAPG), held in Dallas, TX and Calgary, AB.  相似文献   
53.
54.
As a component of the ECOHAB Florida Regional Field Program, this study addresses cell cycle behavior and its importance to bloom formation of the Florida red tide dinoflagellate, Karenia brevis. The cell cycle of K. brevis was first studied by flow cytometry in laboratory batch cultures, and a laboratory mesocosm column, followed by field populations over the 5-year course of the ECOHAB program. Under all conditions studied, K. brevis displayed diel phased cell division with S-phase beginning a minimum of 6 h after the onset of light and continuing for 12–14 h. Mitosis occurred during the dark, and was generally completed by the start of the next day. The timing of cell cycle phases relative to the diel cycle did not differ substantially in bloom populations displaying radically different growth rates (μmin 0.17–0.55) under different day lengths and temperature conditions. The rhythm of cell cycle progression is independent from the rhythm controlling vertical migration, as similar cell cycle distributions are found at all depths of the water column in field samples. The implications of these findings are discussed in light of our current understanding of the dinoflagellate cell cycle and the development of improved models for K. brevis bloom growth.  相似文献   
55.
56.
The climate of the Arctic region is changing rapidly, with important implications for permafrost, vegetation communities, and transport of solutes by streams and rivers to the Arctic Ocean. While research on Arctic streams and rivers has accelerated in recent years, long-term records are relatively rare compared to temperate and tropical regions. We began monitoring the upper Kuparuk River in 1983 as part of a long-term, low-level, whole-season phosphorus enrichment of a 4–6 km experimental reach, which was subsequently incorporated into the Arctic Long-Term Ecological Research (Arctic LTER) programme. The phosphorus enrichment phase of the Upper Kuparuk River Experiment (UKRE) ran continuously for 34 seasons, fundamentally altering the community structure and function of the Fertilized reach. The objectives of this paper are to (a) update observations of the environmental conditions in the Kuparuk River region as revealed by long-term, catchment-level monitoring, (b) compare long-term trends in biogeochemical characteristics of phosphorus-enriched and reference reaches of the Kuparuk River, and (c) report results from a new ‘ReFertilization’ experiment. During the UKRE, temperature and discharge did not change significantly, though precipitation increased slightly. However, the UKRE revealed unexpected community state changes attributable to phosphorus enrichment (e.g., appearance of colonizing bryophytes) and long-term legacy effects of these state changes after cessation of the phosphorus enrichment. The UKRE also revealed important biogeochemical trends (e.g., increased nitrate flux and benthic C:N, decreased DOP flux). The decrease in DOP is particularly notable in that this may be a pan-Arctic trend related to permafrost thaw and exposure to new sources of iron that reduce phosphorus mobility to streams and rivers. The trends revealed by the UKRE would have been difficult or impossible to identify without long-term, catchment level research and may have important influences on connections between Arctic headwater catchments and downstream receiving waters, including the Arctic Ocean.  相似文献   
57.
Thinning of semi-arid forests to reduce wildfire risk is believed to improve forest health by increasing soil moisture. Increased snowpack, reduced transpiration and reduced rainfall interception are frequently cited mechanisms by which reduced canopy density may increase soil moisture. However, the relative importance of these factors has not been rigorously evaluated in field studies. We measured snow depth, snow water equivalent (SWE) and the spatial and temporal variation in soil moisture at four experimental paired treatment-control thinning sites in high elevation ponderosa pine forest northern Arizona, USA. We compared snow and soil moisture measurements with forest structure metrics derived from aerial imagery and 3-dimensional lidar data to determine the relationship between vegetation structure, snow and soil moisture throughout the annual hydrologic cycle. Soil moisture was consistently and significantly higher in thinned forest plots, even though the treatments were performed 8–11 years before this study. However, we did not find evidence that SWE was higher in thinned forests across a range of snow conditions. Regression tree analysis of soil moisture and vegetation structure data provided some evidence that localized differences in transpiration and interception of precipitation influence the spatial pattern of soil moisture at points in the annual hydrologic cycle when the system is becoming increasingly water limited. However, vegetation structure explained a relatively low amount of the spatial variance (R2 < 0.23) in soil moisture. Continuous measurements of soil moisture in depth profiles showed stronger attenuation of soil moisture peaks in thinned sites, suggesting differences in infiltration dynamics may explain the difference in soil moisture between treatments as opposed to overlying vegetation alone. Our results show limited support for commonly cited relationships between vegetation structure, snow and soil moisture and indicate that future research is needed to understand how reduction in tree density alters soil hydraulic properties.  相似文献   
58.
Gran Canaria, like most of the Canary Islands, shows evidence for young basaltic volcanism in the form of cinder cones and valley‐hugging lava flows. These landforms were of no particular use to the aboriginal population, nor to the subsequent Spanish settlers, and young lava flows and lava fields are still referred to as ‘malpaís’ (badlands) in the Canary Islands. In north‐west Gran Canaria, one such lava flow fills the bottom of a steep‐sided valley, which reaches the sea at the present day village of Agaete. The lava flow erupted c. 3030 ± 90 yr bp and displays a total length of ~ 11 km. At its distal end, just outside Agaete, it hosts one of Europe’s largest and most important pre‐historic burial sites constructed of volcanic rock: the Maipés necropolis. Over 700 pre‐historic tombs (or tumuli) constructed from the aa‐type clinker materials have been identified on top of the valley‐filling lava flow. The up to soccer‐ball sized vesicular clinker fragments are sufficiently low in density to provide abundant, workable basalt blocks for the construction of the tumuli, allowing the pre‐hispanic aboriginal population to create a large and magnificent ‘sacred ground’ in an otherwise barren landscape.  相似文献   
59.
Carbonatites host some of the largest and highest grade rare earth element (REE) deposits but the composition and source of their REE-mineralising fluids remains enigmatic. Using C, O and 87Sr/86Sr isotope data together with major and trace element compositions for the REE-rich Kangankunde carbonatite (Malawi), we show that the commonly observed, dark brown, Fe-rich carbonatite that hosts REE minerals in many carbonatites is decoupled from the REE mineral assemblage. REE-rich ferroan dolomite carbonatites, containing 8–15 wt% REE2O3, comprise assemblages of monazite-(Ce), strontianite and baryte forming hexagonal pseudomorphs after probable burbankite. The 87Sr/86Sr values (0.70302–0.70307) affirm a carbonatitic origin for these pseudomorph-forming fluids. Carbon and oxygen isotope ratios of strontianite, representing the REE mineral assemblage, indicate equilibrium between these assemblages and a carbonatite-derived, deuteric fluid between 250 and 400 °C (δ18O + 3 to + 5‰VSMOW and δ13C ? 3.5 to ? 3.2‰VPDB). In contrast, dolomite in the same samples has similar δ13C values but much higher δ18O, corresponding to increasing degrees of exchange with low-temperature fluids (< 125 °C), causing exsolution of Fe oxides resulting in the dark colour of these rocks. REE-rich quartz rocks, which occur outside of the intrusion, have similar δ18O and 87Sr/86Sr to those of the main complex, indicating both are carbonatite-derived and, locally, REE mineralisation can extend up to 1.5 km away from the intrusion. Early, REE-poor apatite-bearing dolomite carbonatite (beforsite: δ18O + 7.7 to + 10.3‰ and δ13C ?5.2 to ?6.0‰; 87Sr/86Sr 0.70296–0.70298) is not directly linked with the REE mineralisation.  相似文献   
60.
The purpose of this study was to develop an interpretive groundwater‐flow model to assess the impacts that planned forest restoration treatments and anticipated climate change will have on large regional, deep (>400 m), semi‐arid aquifers. Simulations were conducted to examine how tree basal area reductions impact groundwater recharge from historic conditions to 2099. Novel spatial analyses were conducted to determine areas and rates of potential increases in groundwater recharge. Changes in recharge were applied to the model by identifying zones of basal area reduction from planned forest restoration treatments and applying recharge‐change factors to these zones. Over a 10‐year period of forest restoration treatment, a 2.8% increase in recharge to one adjacent groundwater basin (the Verde Valley sub‐basin) was estimated, compared to conditions that existed from 2000 to 2005. However, this increase in recharge was assumed to quickly decline after treatment due to regrowth of vegetation and forest underbrush and their associated increased evapotranspiration. Furthermore, simulated increases in groundwater recharge were masked by decreases in water levels, stream baseflow, and groundwater storage resulting from surface water diversions and groundwater pumping. These results indicate that there is an imbalance between water supply and demand in this regional, semi‐arid aquifer. Current water management practices may not be sustainable into the far future and comprehensive action should be taken to minimize this water budget imbalance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号