首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   6篇
测绘学   1篇
地球物理   8篇
地质学   15篇
海洋学   1篇
天文学   28篇
自然地理   8篇
  2024年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   5篇
  2006年   6篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1993年   2篇
  1991年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有61条查询结果,搜索用时 31 毫秒
11.
We report on the microscopic impactor debris around Kamil crater (45 m in diameter, Egypt) collected during our 2010 geophysical expedition. The hypervelocity impact of Gebel Kamil (Ni‐rich ataxite) on a sandstone target produced a downrange ejecta curtain of microscopic impactor debris due SE–SW of the crater (extending ~300,000 m2, up to ~400 m from the crater), in agreement with previous determination of the impactor trajectory. The microscopic impactor debris include vesicular masses, spherules, and coatings of dark impact melt glass which is a mixture of impactor and target materials (Si‐, Fe‐, and Al‐rich glass), plus Fe‐Ni oxide spherules and mini shrapnel, documenting that these products can be found in craters as small as few tens of meters in diameter. The estimated mass of the microscopic impactor debris (<290 kg) derived from Ni concentrations in the soil is a small fraction of the total impactor mass (~10 t) in the form of macroscopic shrapnel. That Kamil crater was generated by a relatively small impactor is consistent with literature estimates of its pre‐atmospheric mass (>20 t, likely 50–60 t).  相似文献   
12.
A method is presented to analyze the effect of stress-strain discontinuities on the ground deformations generated by a pressure source. This is meant to simulate the effects due to caldera structures, likely to present fractured zones at the borders of the collapsed area. A method originally developed by Crouch (1976) to solve plane-strain problems has been used to simulate deformation curves for several source and discontinuity geometries. The main result is that the location of the discontinuities controls the extension of the deformed zone, and always reduces it with respect to a continuous medium. With respect to a homogeneous medium the presence of lateral discontinuities also acts towards lowering the overpressure required to produce a given amount of deformation. These results indicate that, when analyzing ground deformations in calderas, the use of classical methods involving continuous media should be avoided, or at least taken with caution. These methods, in fact, assume that the extension of the deformed zone is only linked to the source depth.Some examples of ground deformations in active calderas have been analyzed in the framework of the results obtained from theoretical modeling. Four calderas recently affected by ground deformations have been considered: Rabaul (New Guinea), Campi Flegrei (Italy), Long Valley and Yellowstone (U.S.A.). The effects of collapsed structures on the deformation field are possibly evidenced for all the four calderas. At Rabaul and Campi Flegrei, the fracture systems mainly affecting the ground deformations probably represent younger, innermost collapses and are well evidenced by seismicity studies. Ground deformations are here concentrated in an area much smaller than the one enclosed by geologically visible caldera rims. In particular, at Rabaul, the effect of the innermost collapse can explain the high concentration of the uplift in the period 1971–1985, previously modeled by a very shallow source (1–3 km) in terms of overpressure in the main magma chamber, probably located at 4–5 km of depth.  相似文献   
13.
Campi Flegrei is a caldera complex located west of Naples, Italy. The last eruption occurred in 1538, although the volcano has produced unrest episodes since then, involving rapid and large ground movements (up to 2 m vertical in two years), accompanied by intense seismic activity. Surface ground displacements detected by various techniques (mainly InSAR and levelling) for the 1970 to 1996 period can be modelled by a shallow point source in an elastic half-space, however the source depth is not compatible with seismic and drill hole observations, which suggest a magma chamber just below 4 km depth. This apparent paradox has been explained by the presence of boundary fractures marking the caldera collapse. We present here the first full 3-D modelling for the unrest of 1982–1985 including the effect of caldera bordering fractures and the topography. To model the presence of topography and of the complex caldera rim discontinuities, we used a mixed boundary elements method. The a priori caldera geometry is determined initially from gravimetric modelling results and refined by inversion. The presence of the caldera discontinuities allows a fit to the 1982–1985 levelling data as good as, or better than, in the continuous half-space case, with quite a different source depth which fits the actual magma chamber position as seen from seismic waves. These results show the importance of volcanic structures, and mainly of caldera collapses, in ground deformation episodes.  相似文献   
14.
DaG 896 is an olivine-rich microporphyritic rock of komatiitic composition. Both the olivine composition (Fa17.5±2.1, [Mn/Mg] = 0.0061) and the bulk oxygen isotopic composition (δ17O = +2.55, δ18O = +3.50) indicate that DaG 896 is a sample of the H-chondrite parent body. The bulk chemistry shows an H-chondritic distribution of lithophile elements, whereas chalcophile and siderophile elements are strongly depleted, indicating formation through whole-rock melting (or nearly so) of H-chondrite material, nearly complete loss of the metal plus sulfide component, and crystallization without significant igneous fractionation. Superheated, severely shocked chondritic relics (∼10 vol%), typically in the form of corroded lithic fragments <100 μm in size intimately distributed within the igneous lithology, indicate that melting was triggered by a highly energetic impact, which possibly induced shock pressures of ∼80-100 GPa. The relatively young 3.704 ± 0.035 Ga 40Ar-39Ar crystallization age is consistent with the impact melting origin, as magmatism in the asteroid belt was active only in the first hundred million years of solar system history.Based on textural data and thermodynamic crystallization modelling, we infer that DaG 896 crystallized from a liquidus temperature of ∼1630°C under relatively slow cooling rates (∼10°C h−1) to ∼1300°C, before quenching. The two-stage cooling history indicates that a reasonable formation environment might be a dike intruding cooler basement below a crater floor. Metal-silicate fractionation may have been accomplished, at least at the centimeter-scale of the studied meteorite sample, through differential acceleration of immiscible liquids of different density during the intense flow regimes associated with the excavation and modification stages of the cratering mechanism. Alternatively, DaG 896 may represent a surface sample of a differentiated melt body at the floor of an impact crater, as gravitational settling appears to be an effective process at the surface of a chondritic parent asteroid: for metal particles 1 to 10 mm in size, typically observed in partially differentiated impact melt rocks, Stokes’ Law indicates a settling velocity >1 m h −1 during the first few hours of crystallization on asteroidal bodies of >25 km radius.The ∼3.7 Ga age of DaG 896 nearly overlaps with the slightly older resetting ages of H-chondrites (all impact melts) available from the literature, indicating that the H-chondrite parent asteroid underwent extensive impact melting at the enduring of the cataclysmic bombardment of the early solar system. Such an age overlap may also indicate early disruption of the initial H-chondrite parent asteroid.The close similarity between the bulk composition and degassing age of DaG 896 and silicate inclusions in IIE iron meteorites is further evidence in support of a common origin by impact melting and metal-silicate segregation on the H-chondrite parent asteroid. Our new high-precision oxygen isotopic measurements of H-chondrites (Δ17O = 0.77 ± 0.04) should be extended to IIEs to verify this possible petrogenetic link.  相似文献   
15.
The early stages of atmospheric entry are investigated in four large (250–950 μm) unmelted micrometeorites (three fine‐grained and one composite), derived from the Transantarctic Mountain micrometeorite collection. These particles have abundant, interconnected, secondary pore spaces which form branching channels and show evidence of enhanced heating along their channel walls. Additionally, a micrometeorite with a double‐walled igneous rim is described, suggesting that some particles undergo volume expansion during entry. This study provides new textural data which links together entry heating processes known to operate inside micrometeoroids, thereby generating a more comprehensive model of their petrographic evolution. Initially, flash heated micrometeorites develop a melt layer on their exterior; this igneous rim migrates inwards. Meanwhile, the particle core is heated by the decomposition of low‐temperature phases and by volatile gas release. Where the igneous rim acts as a seal, gas pressures rise, resulting in the formation of interconnected voids and higher particle porosities. Eventually, the igneous rim is breached and gas exchange with the atmosphere occurs. This mechanism replaces inefficient conductive rim‐to‐core thermal gradients with more efficient particle‐wide heating, driven by convective gas flow. Interconnected voids also increase the likelihood of particle fragmentation during entry and, may therefore explain the rarity of large fine‐grained micrometeorites among collections.  相似文献   
16.
We have investigated silicate emulsions in impact glasses and impact melt rocks from the Wabar (Saudi Arabia), Kamil (Egypt), Barringer (USA), and Tenoumer (Mauritania) impact structures, and in experimentally generated impact glasses and laser-generated glasses (MEMIN research unit) by scanning electron microscopy, electron microprobe analysis, and transmission electron microscopy. Textural evidence of silicate liquid immiscibility includes droplets of one glass disseminated in a chemically distinct glassy matrix; sharp phase boundaries (menisci) between the two glasses; deformation and coalescence of droplets; and occurrence of secondary, nanometer-sized quench droplets in Si-rich glasses. The compositions of the conjugate immiscible liquids (Si-rich and Fe-rich) are consistent with phase separation in two-liquid fields in the general system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5. Major-element partition coefficients are well correlated with the degree of polymerization (NBO/T) of the Si-rich melt: Fe, Ca, Mg, and Ti are concentrated in the poorly polymerized, Fe-rich melt, whereas K, Na, and Si prefer the highly polymerized, Si-rich melt. Partitioning of Al is less pronounced and depends on bulk melt composition. Thus, major element partitioning between the conjugate liquids closely follows trends known from tholeiitic basalts, lunar basalts, and experimental analogs. The characteristics of impact melt inhomogeneity produced by melt unmixing in a miscibility gap are then compared to impact melt inhomogeneity caused by incomplete homogenization of different (miscible or immiscible) impact melts that result from shock melting of different target lithologies from the crater's melt zone, which do not fully homogenize and equilibrate due to rapid quenching. By taking previous reports on silicate emulsions in impact glasses into account, it follows that silicate impact melts of variable composition, cooling rate, and crystallization history might readily unmix during cooling, thereby rendering silicate liquid immiscibility a much more common process in the evolution of impact melts than previously recognized.  相似文献   
17.
Abstract— In this edition of The Meteoritical Bulletin, 1394 recognized meteorites are reported, 27 from specific locations within Africa, 133 from Northwest Africa, 1227 from Antarctica (from ANSMET, PNRA, and PRIC expeditions), and 7 from Asia. The Meteoritical Bulletin announces the approval of four new names series by the Nomenclature Committee of the Meteoritical Society, two from Africa and one from Asia, including Al Haggounia, from Al Haggounia, Morocco, which is projected to be on the order of 3 metric tons of material related to enstatite chondrites and aubrites. Approved are two falls from Africa, Bassikounou (Mauritania) and Gashua (Nigeria). Approved from areas other than Antarctica are one lunar, two Martian, 32 other achondrites, three mesosiderites, two pallasites, one CM, two CK, one CR2, two CV3, one CR2, and four R chondrites. The Nomenclature Committee of the Meteoritical Society announces 48 newly approved relict meteorites from two new name series, Österplana and Gullhögen (both from Sweden).  相似文献   
18.
Gabbro and eclogite boudins are preserved within the amphibolites of the composite para- and ortho-gneiss Variscan basement of the Savona Crystalline Massif (Ligurian Briançonnais, Italy). Whole rock trace element patterns, low initial εNd (+5.4 to +8.8) data and trace element analyses on relict igneous clinopyroxene revealed that the mafic rocks were derived from depleted mantle melts, which most likely underwent crustal contamination during emplacement. Gabbros have a cumulus origin controlled by clinopyroxene and plagioclase segregation, whereas the eclogites represent evolved melts. U-Pb and trace element micro-analyses on zircons separated from one amphibolitised gabbro and one eclogite help to constrain coeval ages at ~468 Ma for their igneous protoliths. The occurrence of a few inherited zircons confirms the involvement of a crustal component in the petrogenesis of the mafic rocks. In the eclogite, concordant zircon ages younger than the protolith age testify to metamorphic re-crystallisation (or new growth) from about 420 to 305 Ma. Zircon textures and trace element compositions indicate that eclogite facies metamorphism occurred 392–376 Ma ago. The younger zircon portions yielding a mean Concordia age of 333 ± 7 Ma are related to equilibration or new growth during the post-eclogite, amphibolite-facies equilibration.  相似文献   
19.
Abstract— The Frontier Mountain (FRO) 93001 meteorite is a 4.86 g fragment of an unshocked, medium‐ to coarse‐grained rock from the acapulcoite‐lodranite (AL) parent body. It consists of anhedral orthoenstatite (Fs13.3 ± 0.4Wo3.1 ± 0.2), augite (Fs6.1 ± 0.7Wo42.3 ± 0.9; Cr2O3 = 1.54 ± 0.03), and oligoclase (Ab80.5 ± 3.3Or3.1 ± 0.6) up to >1 cm in size enclosing polycrystalline aggregates of fine‐grained olivine (average grain size: 460 ± 210 μm) showing granoblastic textures, often associated with Fe,Ni metal, troilite, chromite (cr# = 0.91 ± 0.03; fe# = 0.62 ± 0.04), schreibersite, and phosphates. Such aggregates appear to have been corroded by a melt. They are interpreted as lodranitic xenoliths. After the igneous (the term “igneous” is used here strictly to describe rocks or minerals that solidified from molten material) lithology intruding an acapulcoite host in Lewis Cliff (LEW) 86220, FRO 93001 is the second‐known silicate‐rich melt from the AL parent asteroid. Despite some similarities, the silicate igneous component of FRO 93001 (i.e., the pyroxene‐plagioclase mineral assemblage) differs in being coarser‐grained and containing abundant enstatite. Melting‐crystallization modeling suggests that FRO 93001 formed through high‐degree partial melting (≥35 wt%; namely, ≥15 wt% silicate melting and ?20 wt% metal melting) of an acapulcoitic source rock, or its chondritic precursor, at temperatures ≥1200 °C, under reducing conditions. The resulting magnesium‐rich silicate melt then underwent equilibrium crystallization; prior to complete crystallization at ?1040 °C, it incorporated lodranitic xenoliths. FRO 93001 is the highest‐temperature melt from the AL parent‐body so far available in laboratory. The fact that FRO 93001 could form by partial melting and crystallization under equilibrium conditions, coupled with the lack of quench‐textures and evidence for shock deformation in the xenoliths, suggests that FRO 93001 is a magmatic rock produced by endogenic heating rather than impact melting.  相似文献   
20.
We evaluate the seismic moment–frequency relation for the Harvard catalogue in the period 1977–1994. This catalogue is composed of about 12 000 earthquakes. After selection of events in terms of depth and energy, we retain about 8000 data points. We estimate two parameters of the seismic moment distribution: the power exponent β and the cut-off value M m . The method used is a least-squares linear fit on a log–log scale performed over a range selected on the basis of the standard deviation from the histogram. The analysis is carried out for different subdivisions of the Earth in square grids of different sizes. Neither parameter exhibits a dependence on cell size, suggesting the universality of their values and the interpretation of the existence of a cut-off as a finite size effect linked to a finite catalogue length. The variations of the parameters are investigated as a function of time (duration of the catalogue) and versus the number of events used for building up the distribution. Again, β and M m do not depend on time, but M m depends on the number of events, reaching a stable value for N ≈ 1000. The only significant change in the parameters is observed for different values of M 0upper in the catalogue, revealing the existence of universality classes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号