首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   10篇
地球物理   33篇
地质学   7篇
天文学   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   5篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   3篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2001年   1篇
  1996年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
31.
Terrestrial and aquatic ecological productivity are often nutrient limited in subarctic permafrost environments. High latitude regions are experiencing significant climatic change, including rapid warming and changing precipitation patterns, which may result in changes in nutrient dynamics within terrestrial and aquatic systems and hydrochemical transport between them. The objective of this research was to characterize changes in runoff quantity and quality within, and between peatlands and ponds throughout the snow‐free summer season. Two ponds and their catchments were monitored over the snow‐free season to measure changes in hydrologic storage, and to determine how water chemistry changed with the evolution of the frost table depth. Thresholds in hydrologic storage combined with frost table position (which inhibited infiltration and storage) produced nonlinear responses for runoff generation through highly conductive shallow peat layers while deeper, less conductive layers retarded flow. Greater inputs were required to exceed hydrologic storage (fill and spill) as a deepening frost table increased the hydrologically active portion of the soil, leading to seasonal variability in runoff pathways between peatlands and ponds. Runoff contributions to ponds were an integral component of the snow‐free water balance during the study period, contributing up to 60% of all snow‐free inputs. Groundwater chemistry (and pond chemistry following runoff events when ponds were connected with peatlands) reflected the different depths of peat and mineral soil accessed throughout the season. This work has improved scientific understanding of the combined controls of hydrologic inputs and ground frost on runoff and nutrient transport between peatlands and ponds, and sheds insight into how nutrient dynamics in cold regions may evolve under a changing climate.  相似文献   
32.
Subalpine forests are hydrologically important to the function and health of mountain basins. Identifying the specific water sources and the proportions used by subalpine forests is necessary to understand potential impacts to these forests under a changing climate. The recent “Two Water Worlds” hypothesis suggests that trees can favour tightly bound soil water instead of readily available free-flowing soil water. Little is known about the specific sources of water used by subalpine trees Abies lasiocarpa (Subalpine fir) and Picea engelmannii (Engelmann spruce) in the Canadian Rocky Mountains. In this study, stable water isotope (δ18O and δ2H) samples were obtained from S. fir and Engelmann spruce trees at three points of the growing season in combination with water sources available at time of sampling (snow, vadose zone water, saturated zone water, precipitation). Using the Bayesian Mixing Model, MixSIAR, relative source water proportions were calculated. In the drought summer examined, there was a net loss of water via evapotranspiration from the system. Results highlighted the importance of tightly vadose zone, or bound soil water, to subalpine forests, providing insights of future health under sustained years of drought and net loss in summer growing seasons. This work builds upon concepts from the “Two Water Worlds” hypothesis, showing that subalpine trees can draw from different water sources depending on season and availability. In our case, water use was largely driven by a tension gradient within the soil allowing trees to utilize vadose zone water and saturated zone water at differing points of the growing season.  相似文献   
33.
The present work addresses the problem of lack of coordination between policies and actors with joint competence for risk management, i.e., civil protection, spatial planning, and sectoral planning (e.g., forest policy in the case of forest fire risk). Spatial planning in particular is assigned a minor or no role at all though it might perfectly operate as the coordinating policy platform; the reason is that spatially relevant analysis and policy guidance is an omnipresent component of the risk management cycle. However, disconnected risk relevant policies turning a blind eye to spatial planning might cause several adverse repercussions: Breaks in the response-preparedness-prevention-remediation chain (which should function as a continuum), minimal attention to prevention, risk expansion and growth instead of mitigation, lack of synergies between involved actors as well as duplicated or even diverging measures and funding. The authors bear witness to the above suggestions by examining three cases of European (regional and local) risk management systems faced with failures when confronting natural hazards (floods and forest fires). These three systems are embedded in different types of political-administrative structures, namely those of the city of Dortmund (Germany) facing floods, Eastern Attica region (Greece), and Lazio Region (Italy) facing forest fires.  相似文献   
34.
35.
Chiara M. Petrone 《Lithos》2010,119(3-4):585-606
A large Quaternary monogenetic volcanic field is present in the western part of the Trans-Mexican Volcanic Belt. It is composed by mafic-intermediate scoria cones and silicic domes that are arranged in two NNW–SSE alignments. These mark the north and south borders (Northern Volcanic Chain and Southern Volcanic Chain, SVC) of the San Pedro–Ceboruco graben. The products of this monogenetic volcanic field span a large range of compositions (from basalt to rhyolite) and magma affinities (from sub-alkaline to Na-alkaline), defining different magmatic groups. Mafic and silicic monogenetic centres from the north alignment also coexist with two stratovolcanoes (Ceboruco and Tepetiltic) and sometimes punctuate their flanks.Whole-rock analyses indicate the existence of 4 different types of primitive magmas (Na-alkaline, High-Ti, Low-Ti/SVC and sub-alkaline) which have evolved independently by low-P magmatic processes. Despite the relatively small size and simplicity of the monogenetic magmatism, open-system processes have modified the geochemical and isotope composition of erupted products. The negative correlation between Sr isotope ratios and MgO contents observed for Southern Volcanic Chain and High-Ti groups points to crustal interaction via AFC processes, involving upper granitic crust and mafic lower crust respectively. In contrast, the large variability in Nd-isotopic ratios, combined with low and less variable 87Sr/86Sr, shown by the most mafic compositions of the High-Ti group is mostly due to mantle source heterogeneities. Low-Ti and Na-alkaline compositions are only slightly modified by crustal contamination processes and their whole-rock geochemistry reflects the complex nature of the western Mexico sub-arc mantle. It is therefore apparent that a combination of mantle source processes plus crustal assimilation has generated complex geochemical and isotopic characteristics in the western part of the Trans-Mexican Volcanic belt.Despite the presence of monogenetic cones on the flanks of stratovolcanoes, limited magma interaction between monogenetic and polygenetic magmatism has been recognised only at Ceboruco, possibly producing the chemical variability of post-caldera lavas. Indeed, mafic magma feeding High-Ti monogenetic systems might represent the possible mafic end-member which triggered the Ceboruco caldera-forming event. This may have important implications for other explosive systems in which monogenetic magmatism is associated with stratovolcanoes.A geographic/tectonic control is also suggested by the geochemical data. Na-alkaline compositions are only found in the northern part of the Northern Volcanic Chain. Parental magmas of both the High-Ti and Low-Ti monogenetic series, erupted between the Ceboruco and Tepetiltic stratovolcanoes, were modified by lower crust AFC processes possibly favoured by the stress regime. Indeed, the presence of a local left-hand step over along the northern main fault systems between the two stratovolcanoes might inhibit free uprising of monogenetic mafic magmas. The preferential alignment of stratovolcanoes and monogenetic volcanic vents parallel to the northern main fault systems and the possible mixing between High-Ti mafic monogenetic magmas and more evolved Ceboruco magmas suggests that, under the predominance of regional stress, the influence of central volcanic vents on monogenetic magmatism might be more complex than simple control of vent directions and might favours magma mixing processes.  相似文献   
36.
The relative contributions to total actual evapotranspiration (AET) from pond and riparian areas in a pond‐wetland complex in the Western Boreal Plain (WBP) of northern Alberta are measured using the Bowen ratio energy balance technique. Measurements show that a pond typical of the WBP evaporates at a rate more than twice that of the adjacent riparian peatland. Relating the actual to potential evapotranspiration over both surfaces yields Priestley–Taylor α coefficients of 0·69 and 1·11 for the peatland and pond respectively. Further results demonstrate that the sheltering and turbulent influences of the adjacent forested areas must be considered in the processes governing the permanence of WBP ponds. That is, forestry practices may inadvertently enhance the evaporative losses from the ponds, over and above the controls exerted by the regional climate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
37.
The Secche di Lazzaro (SDL) phreatomagmatic activity, with the associated Neostromboli sector collapse, represents the most powerful activity of the last 6 ky at Stromboli. As revealed by its present-day activity, Stromboli is one of the most eruptive volcanoes in Italy, and flank instability, along its NW flank, is a common process. Volcano instability is often dramatised by explosive eruptions, thus it is of crucial importance to understand the linking between volcano collapse and the plumbing system itself. The possible role of pre-eruptive magmatic processes as triggers of explosive eruptions can be mainly preserved by minerals and revealed by petrochemical studies. We studied the juvenile components (scoria and pumice) of the pyroclastic deposits from the SDL phreatomagmatic activity with the aim to understand the eruption–collapse link.  相似文献   
38.
By applying wavelet‐based empirical orthogonal function (WEOF) analysis to gridded precipitation (P) and empirical orthogonal function (EOF) analysis to gridded air temperature (T), potential evapotranspiration (PET), net precipitation (P‐PET) and runoff (Q), this paper examines the spatial, temporal and frequency patterns of Alberta's climate variability. It was found that only WEOF‐based precipitation patterns, possibly modulated by El Nino Southern Oscillation (ENSO) and Pacific Decadal Oscillation(PDO), delineated Alberta into four major regions which geographically represent northern Alberta Boreal forests, southern Alberta grasslands and Aspen Parklands and the Rocky Mountains and Foothills. The leading mode of wavelet‐based precipitation variability WPC1 showed that between 1900 and 2000, a wet climate dominated northern Alberta with significant 4–8, 11 and 25‐year periodic cycles, while the second mode WPC2 showed that between 1960 and 2000, southern Alberta grasslands were characterized by decreasing precipitation, dominated by 11‐year cycles, and the last two modes WPC3 and WPC4 were characterized by 4–7 and 25‐year cycles and both delineated regions where moisture from the Pacific Ocean penetrated the Rocky Mountains, accounted for much of the sub‐alpine climate. These results show that WEOF is superior to EOF in delineating Alberta precipitation variability to sub‐regions that more closely agree with its eco‐climate regions. Further, it was found that while WPC2 could not explain runoff variations in southern Alberta, WPC1, WPC3 and WPC4 accounted for runoff variability in their respective sub‐regions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
39.
The damage of nonstructural components represents the largest contribution to the economic loss caused by an earthquake. Since nonstructural components are not amenable to traditional structural analysis, full-scale experimental testing is crucial to understand their behaviour under earthquake. For this reason, shaking table tests are performed to investigate the seismic behaviour of plasterboard partitions. A steel test frame is properly designed in order to simulate the seismic effects at a generic building storey. The tests are performed shaking the table simultaneously in both horizontal directions. To investigate a wide range of interstorey drift demand and seismic damage, the shakes are performed scaling the accelerograms at eleven different intensity levels. The tested plasterboard partitions from Siniat exhibit a good seismic behaviour, both in their own plane and out of plane, showing limited damage up to 1.1 % interstorey drift ratio. The correlation between the dynamic characteristics of the test setup and the recorded damage is evidenced. Finally, an interesting comparison between the experimental results and the analytical model is also performed.  相似文献   
40.
The nonlinear response of structures is usually evaluated by considering two accelerograms acting simultaneously along the orthogonal directions. In this study, the infl uence of the earthquake direction on the seismic response of building structures is examined. Three multi-story RC buildings, representing a very common structural typology in Italy, are used as case studies for the evaluation. They are, respectively, a rectangular plan shape, an L plan shape and a rectangular plan shape with courtyard buildings. Nonlinear static and dynamic analyses are performed by considering different seismic levels, characterized by peak ground acceleration on stiff soil equal to 0.35 g, 0.25 g and 0.15 g. Nonlinear dynamic analyses are carried out by considering twelve different earthquake directions, and rotating the direction of both the orthogonal components by 30° for each analysis(from 0° to 330°). The survey is carried out on the L plan shape structure. The results show that the angle of the seismic input motion signifi cantly infl uences the response of RC structures; the critical seismic angle, i.e., the incidence angle that produces the maximum demand, provides an increase of up to 37% in terms of both roof displacements and plastic hinge rotations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号