首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   15篇
  国内免费   1篇
测绘学   12篇
大气科学   14篇
地球物理   53篇
地质学   118篇
海洋学   8篇
天文学   11篇
综合类   2篇
自然地理   10篇
  2023年   2篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   19篇
  2015年   12篇
  2014年   9篇
  2013年   15篇
  2012年   13篇
  2011年   16篇
  2010年   12篇
  2009年   27篇
  2008年   15篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1996年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有228条查询结果,搜索用时 15 毫秒
221.
Innovative flume experiments were conducted in a recirculating straight flume. Zostera noltei meadows were sampled in their natural bed sediments in the field at contrasting stages of their seasonal growth. The aims of this study were: (i) to quantify the combined effects of leaf flexibility and development characteristics of Zostera noltei canopies on their interaction with hydrodynamics; and (ii) to quantify the role of Zostera noltei meadows in suspended sediment trapping and bed sediment resuspension related with changes in hydrodynamic forcing caused by the seasonal development of seagrasses. Velocity within the canopy was significantly damped. The attenuation in velocity ranged from 34 to 87% compared with bare sediments and was associated with a density threshold resulting from the flow‐induced canopy reconfiguration. The reduction in flow was higher in dense canopies at higher velocities than in less dense canopies, in which the reduction in flow was greater at low velocities. These contrasted results can be explained by competition between a rough‐wall boundary layer caused by the bed and a shear layer caused by the canopy. The velocity attenuation was associated with a two to three‐fold increase in bottom shear stress compared with unvegetated sediment. Despite the increase in near‐bed turbulence, protection of the sediment against erosion increased under a fully developed meadow, while sediment properties were found to be the main factor controlling erosion in a less developed meadow. Deposition fluxes were higher on the vegetated bed than on bare sediments, and these fluxes increased with leaf density. Fewer freshly deposited sediments were resuspended in vegetated beds, resulting in an increase in net sediment deposition with meadow growth. However, in the case of a very high leaf area index, sediment was mostly deposited on leaves, which facilitated subsequent resuspension and resulted in less efficient sediment trapping than in the less developed meadow.  相似文献   
222.
Retreating glaciers give way to new landscapes with lakes as an important element. In this study, we combined available data on lake outlines with historical orthoimagery and glacier outlines for six time periods since the end of the Little Ice Age (LIA; ~1850). We generated a glacial lake inventory for modern times (2016) and traced the evolution of glacial lakes that formed in the deglaciated area since the LIA. In this deglaciated area, a total of 1192 lakes formed over the period of almost 170 years, 987 of them still in existence in 2016. Their total water surface in 2016 was 6.22 ± 0.25 km2. The largest lakes are > 0.4 km2 (40 ha) in size, while the majority (> 90%) are smaller than 0.01 km2. Annual increase rates in area and number peaked in 1946–1973, decreased towards the end of the 20th century, and reached a new high in the latest period 2006–2016. For a period of 43 years (1973–2016), we compared modelled overdeepenings from previous studies to actual lake genesis. For a better prioritization of formation probability, we included glacier-morphological criteria such as glacier width and visible crevassing. About 40% of the modelled overdeepened area actually got covered by lakes. The inclusion of morphological aspects clearly aided in defining a lake formation probability to be linked to each modelled overdeepening. Additional morphological variables, namely dam material and type, surface runoff, and freeboard, were compiled for a subset of larger and ice-contact lakes in 2016, constituting a basis for future hazard assessment.  相似文献   
223.
To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n  = 2,140, R 2 = .91, p  < .001. We investigated the precipitation‐type‐specific stable isotope composition and analysed the effects of amount, altitude, and temperature. Aggregated annual mean values revealed isotope composition of rainfall as most depleted and fog water as most enriched in heavy isotopes at the highest elevation research site. We found an altitude effect of δ18Orain = ?0.11‰ × 100 m?1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south‐ and north‐easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of d excess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.  相似文献   
224.
We present an independent calibration model for the determination of biogenic silica (BSi) in sediments, developed from analysis of synthetic sediment mixtures and application of Fourier transform infrared spectroscopy (FTIRS) and partial least squares regression (PLSR) modeling. In contrast to current FTIRS applications for quantifying BSi, this new calibration is independent from conventional wet-chemical techniques and their associated measurement uncertainties. This approach also removes the need for developing internal calibrations between the two methods for individual sediments records. For the independent calibration, we produced six series of different synthetic sediment mixtures using two purified diatom extracts, with one extract mixed with quartz sand, calcite, 60/40 quartz/calcite and two different natural sediments, and a second extract mixed with one of the natural sediments. A total of 306 samples—51 samples per series—yielded BSi contents ranging from 0 to 100 %. The resulting PLSR calibration model between the FTIR spectral information and the defined BSi concentration of the synthetic sediment mixtures exhibits a strong cross-validated correlation ( \( {\text{R}}^{ 2}_{\text{cv}} \)  = 0.97) and a low root-mean square error of cross-validation (RMSECV = 4.7 %). Application of the independent calibration to natural lacustrine and marine sediments yields robust BSi reconstructions. At present, the synthetic mixtures do not include the variation in organic matter that occurs in natural samples, which may explain the somewhat lower prediction accuracy of the calibration model for organic-rich samples.  相似文献   
225.
Crop-residue return is a recommended practice for soil and nutrient management and is important in soil organic carbon (SOC) sequestration and CO2 mitigation. We applied a process-based Environmental Policy Integrated Climate (EPIC) model to simulate the spatial pattern of topsoil organic carbon changes from 2001 to 2010 under 4 crop-residue return scenarios in China. The carbon loss (28.89 Tg yr-1) with all crop-residue removal (CR0%) was partly reduced by 22.38 Tg C yr-1 under the status quo CR30% (30% of crop-residue return). The topsoil in cropland of China would become a net carbon sink if the crop-residue return rate was increased from 30% to 50%, or even 75%. The national SOC sequestration potential of cropland was estimated to be 25.53 Tg C yr-1 in CR50% and 52.85 Tg C yr-1 in CR75%, but with high spatial variability across regions. The highest rate of SOC sequestration potential in density occurred in Northwest and North China while the lowest was in East China. Croplands in North China tended to have stronger regional SOC sequestration potential in storage. During the decade, the reduced CO2 emissions from enhanced topsoil carbon in CR50% and CR75% were equivalent to 1.4% and 2.9% of the total CO2 emissions from fossil fuels and cement production in China, respectively. In conclusion, we recommend encouraging farmers to return crop-residue instead of burning in order to improve soil properties and alleviate atmospheric CO2 rises, especially in North China.  相似文献   
226.
This study tests if burnt soils and sediments can provide reliable records of geomagnetic field strength at the time of burning by carrying out an experiment to reproduce the prehistoric use of fire on a clayish soil substratum. Rock magnetic experiments showed that in the upper 0–1 cm of the central part of the burnt surface, remanence is a thermoremanent magnetization carried by single-domain magnetite and that samples are thermally stable. Fourteen specimens from that area were subjected to paleointensity experiments with the Coe method (1967). An intensity of 42.9 ± 5.7 μT was estimated below 440°C, whereas at higher temperatures magneto-mineralogical alterations were observed. Corresponding successful microwave intensity determinations from two specimens gave a mean value of 47.6 μT. Both results are in reasonable agreement with the expected field value of 45.2 μT. Burnt soils of archeological fires thus have the potential to record accurately the paleofield strength and may be useful targets for archeointensity investigations. Coincident results obtained from two different paleointensity determination methods support this conclusion.  相似文献   
227.
The chemical and isotopic composition of pore fluids is presented for five deep-rooted mud volcanoes aligned on a transect across the Gulf of Cadiz continental margin at water depths between 350 and 3860 m. Generally decreasing interstitial Li concentrations and 87Sr/86Sr ratios with increasing distance from shore are attributed to systematically changing fluid sources across the continental margin. Although highest Li concentrations at the near-shore mud volcanoes coincide with high salinities derived from dissolution of halite and late-stage evaporites, clayey, terrigenous sediments are identified as the ultimate Li source to all pore fluids investigated. Light δ7Li values, partly close to those of hydrothermal vent fluids (δ7Li: +11.9‰), indicate that Li has been mobilized during high-temperature fluid/sediment or fluid/rock interactions in the deep sub-surface. Intense leaching of terrigenous clay has led to radiogenic 87Sr/86Sr ratios (∼0.7106) in pore fluids of the near-shore mud volcanoes. In contrast, non-radiogenic 87Sr/86Sr ratios (∼0.7075) at the distal locations are attributed to admixing of a basement-derived fluid component, carrying an isotopic signature from interaction with the basaltic crust. This inference is substantiated by temperature constraints from Li isotope equilibrium calculations suggesting exchange processes at particularly high temperatures (>200 °C) for the least radiogenic pore fluids of the most distal location.Advective pore fluids in the off-shore reaches of the Gulf of Cadiz are influenced by successive exchange processes with both oceanic crust and terrigenous, fine-grained sediments, resulting in a chemical and isotopic signature similar to that of fluids in near-shore ridge flank hydrothermal systems. This suggests that deep-rooted mud volcanoes in the Gulf of Cadiz represent a fluid pathway intermediate between mid-ocean ridge hydrothermal vent and shallow, marginal cold seep. Due to the thicker sediment coverage and slower fluid advection rates, the overall geochemical signature is shifted towards the sediment-diagenetic signal compared to ridge flank hydrothermal environments.  相似文献   
228.
Carbonatites of the Eocene Tamazeght complex, High Atlas Mountains, Morocco, consist of calciocarbonatites (alvikite and sövite dykes) and magnesiocarbonatites (diatreme breccias and dykes rocks). These are associated with ultramafic, shonkinitic, gabbroic to monzonitic and various foid syenitic silicate units. Stable and radiogenic isotope compositions for carbonatites and silicate rocks indicate that they share a common source in the mantle, although for some carbonatitic samples contamination with sedimentary rocks seems important. The observed isotopic heterogeneity is mainly attributed to source characteristics, fractional crystallization (accompanied by various degrees of assimilation), and late- to post-magmatic fluid–rock interaction. During the late fluid–rock interaction, Sr, Mn, and possibly also Fe were mobilized and redistributed to form secondary carbonate minerals in carbonatites. These fluids also penetrated into the adjacent syenitic rocks, causing enrichment in the same elements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号