首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   15篇
  国内免费   1篇
测绘学   12篇
大气科学   14篇
地球物理   52篇
地质学   118篇
海洋学   8篇
天文学   11篇
综合类   2篇
自然地理   10篇
  2023年   2篇
  2021年   8篇
  2020年   10篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   19篇
  2015年   12篇
  2014年   9篇
  2013年   15篇
  2012年   13篇
  2011年   16篇
  2010年   12篇
  2009年   27篇
  2008年   14篇
  2007年   5篇
  2006年   10篇
  2005年   8篇
  2004年   3篇
  2003年   3篇
  2001年   2篇
  2000年   1篇
  1996年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有227条查询结果,搜索用时 317 毫秒
131.
In this article, we evaluate and compare results from three integrated assessment models (GCAM, IMAGE, and ReMIND/MAgPIE) regarding the drivers and impacts of bioenergy production on the global land system. The considered model frameworks employ linked energy, economy, climate and land use modules. By the help of these linkages the direct competition of bioenergy with other energy technology options for greenhouse gas (GHG) mitigation, based on economic costs and GHG emissions from bioenergy production, has been taken into account. Our results indicate that dedicated bioenergy crops and biomass residues form a potentially important and cost-effective input into the energy system. At the same time, however, the results differ strongly in terms of deployment rates, feedstock composition and land-use and greenhouse gas implications. The current paper adds to earlier work by specific looking into model differences with respect to the land-use component that could contribute to the noted differences in results, including land cover allocation, land use constraints, energy crop yields, and non-bioenergy land mitigation options modeled. In scenarios without climate change mitigation, bioenergy cropland represents 10–18 % of total cropland by 2100 across the different models, and boosts cropland expansion at the expense of carbon richer ecosystems. Therefore, associated emissions from land-use change and agricultural intensification as a result of bio-energy use range from 14 and 113 Gt CO2-eq cumulatively through 2100. Under climate policy, bioenergy cropland increases to 24–36 % of total cropland by 2100.  相似文献   
132.
Arsenic is a redox‐sensitive element of environmental relevance and often enriched in iron sulphides. Because sediments from the Achterwasser lagoon, a part of the estuarine system of the river Oder, south‐west Baltic Sea, show unexpectedly high pyrite concentrations of up to 7·5 wt% they were used to investigate the influence of authigenic pyrite on the mobility and burial of As in the coastal environment. Micro‐X‐ray‐fluorescence measurements of 106 micrometre‐sized pyrite framboids from the anoxic sediments show highly variable As concentrations ranging from 6 to 1142 μg g?1. Even within a 1 cm thick layer, the As concentration of different framboids varies greatly and no clear depth trend is visible throughout the 50 cm long sediment core. Pyrite can account for 9 to 55% (average 22%) of the total As budget of the sediments and the degree of trace metalloid pyritization for As ranges from 26 to 61%, indicating that authigenic pyrite formation is an important process in the geochemical cycling of As in coastal sediments. High‐resolution micro‐X‐ray fluorescence mapping of single pyrite grains shows that As is distributed inhomogeneously within larger framboids, suggesting changing pore water composition during pyrite growth. X‐ray absorption near edge structure spectra indicate that As is usually present as As(‐I) substituting S in the pyrite lattice. However, in samples close to the sediment/water interface a considerable part of As is in higher valence states (+III/+V). This can be explained by frequent re‐suspension of the surficial sediments to the oxic water column due to wave action and subsequent re‐deposition, leading to the adsorption of As oxyanions onto pyrite. Although reduced As(‐I) becomes more important in the deeper samples, reflecting decreasing redox potential and a longer time since deposition, the occurrence of oxidized As species (AsIII/AsV) in pyrite in the anoxic part of the sediment suggests formation under dysoxic conditions.  相似文献   
133.
134.
We report δ44/40Ca(SRM 915a) values for eight fused MPI‐DING glasses and the respective original powders, six USGS igneous rock reference materials, the U‐Th disequilibria reference material TML, IAEA‐CO1 (Carrara marble) and several igneous rocks (komatiites and carbonatites). Sample selection was guided by three considerations: (1) to address the need for information values on reference materials that are widely available in support of interlaboratory comparison studies; (2) support the development of in situ laser ablation and ion microprobe techniques, which require isotopically homogenous reference samples for ablation; and (3) provide Ca isotope values on a wider range of igneous and metamorphic rock types than is currently available in the scientific literature. Calcium isotope ratios were measured by thermal ionisation mass spectrometry in two laboratories (IFM‐GEOMAR and Saskatchewan Isotope Laboratory) using 43Ca/48Ca‐ and 42Ca/43Ca‐double spike techniques and reported relative to the calcium carbonate reference material NIST SRM 915a. The measurement uncertainty in both laboratories was better than 0.2‰ at the 95% confidence level. The impact of different preparation methods on the δ44/40Ca(SRM 915a) values was found to be negligible. Except for ML3‐B, the original powders and the respective MPI‐DING glasses showed identical δ44/40Ca(SRM 915a) values; therefore, possible variations in the Ca isotope compositions resulting from the fusion process are excluded. Individual analyses of different glass fragments indicated that the glasses are well homogenised on the mm scale with respect to Ca. The range of δ44/40Ca(SRM 915a) values in the igneous rocks studied was larger than previously observed, mostly owing to the inclusion of ultramafic rocks from ophiolite sections. In particular, the dunite DTS‐1 (1.49 ± 0.06‰) and the peridotite PCC‐1 (1.14 ± 0.07‰) are enriched in 44Ca relative to volcanic rocks (0.8 ± 0.1‰). The Carrara marble (1.32 ± 0.06‰) was also found to be enriched in 44Ca relative to the values of assumed precursor carbonates (< 0.8‰). These findings suggest that the isotopes of Ca are susceptible to fractionation at high temperatures by, as yet, unidentified igneous and metamorphic processes.  相似文献   
135.
Due to close encounters with the inner planets, Near-Earth-Asteroids (NEAs) can have very chaotic orbits. Because of this chaoticity, a statistical treatment of the dynamical properties of NEAs becomes difficult or even impossible. We propose a new way to classify NEAs by using methods from Fuzzy Logic. We demonstrate how a fuzzy characterization of NEAs can be obtained and how a subsequent analysis can deliver valid and quantitative results concerning the long-term dynamics of NEAs.  相似文献   
136.
Groundwater recharge rates calculated with the GROWA model have been applied as the recharge boundary condition for the regional groundwater model Rurscholle. This model simulates groundwater dynamics in the Pleistocene aquifers of the Lower Rhine lignite mining area (Germany). GROWA uses an area-differentiated approach to calculate recharge rates depending on runoff-relevant site characteristics, which are represented by a set of baseflow indices. The regional accuracy of the coupled groundwater and GROWA models has been checked using groundwater hydrographs as validation criteria. The results suggest that the current (unadjusted) version of GROWA underestimates the regional groundwater recharge rate by 10–20 mm/yr. The comparative analysis identified areas where recharge calculations could be improved by adjusting the baseflow indices for areas where runoff is dominated by slope, low water-logging and a low degree of sealing. Using the adjusted set of baseflow indices, the mean groundwater recharge rate of the Rurscholle region was modelled as approx. 170 mm/yr. This study highlights the benefit of using a coupled approach and being able to independently calibrate and validate groundwater recharge boundary conditions in regional groundwater models.  相似文献   
137.
138.
Pore water and solid phase data for redox-sensitive metals (Mn, Fe, V, Mo and U) were collected on a transect across the Peru upwelling area (11°S) at water depths between 78 and 2025 m and bottom water oxygen concentrations ranging from ∼0 to 93 μM. By comparing authigenic mass accumulation rates and diffusive benthic fluxes, we evaluate the respective mechanisms of trace metal accumulation, retention and remobilization across the oxygen minimum zone (OMZ) and with respect to oxygen fluctuations in the water column related to the El Niño Southern Oscillation (ENSO).Sediments within the permanent OMZ are characterized by diffusive uptake and authigenic fixation of U, V and Mo as well as diffusive loss of Mn and Fe across the benthic boundary. Some of the dissolved Mn and Fe in the water column re-precipitate at the oxycline and shuttle particle-reactive trace metals to the sediment surface at the lower and upper boundary of the OMZ. At the lower boundary, pore waters are not sufficiently sulfidic as to enable an efficient authigenic V and Mo fixation. As a consequence, sediments below the OMZ are preferentially enriched in U which is delivered via both in situ precipitation and lateral supply of U-rich phosphorites from further upslope. Trace metal cycling on the Peruvian shelf is strongly affected by ENSO-related oxygen fluctuations in bottom water. During periods of shelf oxygenation, surface sediments receive particulate V and Mo with metal (oxyhydr)oxides that derive from both terrigenous sources and precipitation at the retreating oxycline. After the recurrence of anoxic conditions, metal (oxyhydr)oxides are reductively dissolved and the hereby liberated V and Mo are authigenically removed. This alternation between supply of particle-reactive trace metals during oxic periods and fixation during anoxic periods leads to a preferential accumulation of V and Mo compared to U on the Peruvian shelf. The decoupling of V, Mo and U accumulation is further accentuated by the varying susceptibility to re-oxidation of the different authigenic metal phases. While authigenic U and V are readily re-oxidized and recycled during periods of shelf oxygenation, the sequestration of Mo by authigenic pyrite is favored by the transient occurrence of oxidizing conditions.Our findings reveal that redox-sensitive trace metals respond in specific manner to short-term oxygen fluctuations in the water column. The relative enrichment patterns identified might be useful for the reconstruction of past OMZ extension and large-scale redox oscillations in the geological record.  相似文献   
139.
Field and laboratory investigations were performed to identify the principal mechanisms of the hydrochemical groundwater evolution among low mineralised groundwater in the Triassic Bunter sandstone aquifer of the Odenwald low mountain range, central Germany. Hydrochemical composition comprises low pH, SO4-rich shallow groundwaters issued by springs (Ca-Mg-SO4-type) grading to SO4-poor deep groundwaters with near-neutral pH (Ca-HCO3-type). Batch experiments of the original rock were run to determine primary mineral alteration reactions and the origin of dissolved ions. Principal experimental reactions comprise the decomposition of anorthite, K-feldspar, biotite and jarosite as mineral components of the original sandstone rock and the formation of clay minerals of the smectite group (Ca-montmorillonite, beidellite), and iron hydroxides as secondary minerals. Mobilisation of fluid inclusion in quartz grains contributes to Na and Cl concentrations in the leachates. The evolution of deep groundwater circulation proceeds by mineral alteration reactions calculated by the inverse modelling of both primary and secondary minerals to produce low-T mineral phases. The dissolution of K-feldspar converts Ca-montmorillonite to illite (illitisation). The formation of Na-beidellite correlates with decreasing concentration of Na in solution. Mineral reactions further proceed to the formation of kaolinite as stable mineral phase. As indicated by modelled adsorption curves, the decrease of SO4 concentrations during groundwater evolution relates to the adsorption of SO4 on iron hydroxides. The leaching of calcite indicated for individual groundwaters relates to the distribution of loess in the appropriate catchment areas.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号