首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   7篇
  国内免费   1篇
测绘学   2篇
大气科学   23篇
地球物理   41篇
地质学   43篇
海洋学   11篇
天文学   15篇
自然地理   4篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2017年   6篇
  2016年   6篇
  2015年   4篇
  2014年   8篇
  2013年   11篇
  2012年   3篇
  2011年   8篇
  2010年   9篇
  2009年   7篇
  2008年   5篇
  2007年   7篇
  2006年   4篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   3篇
  2000年   3篇
  1999年   3篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1955年   1篇
排序方式: 共有139条查询结果,搜索用时 125 毫秒
41.
We report the first data on belowground tissue mass and nitrogen (N) concentration forSpartina foliosa in southern California, assessing one natural and two constructed marshes on San Diego Bay. Biomass at the natural marsh was low compared to that of otherSpartina spp., but higher than values reported forS. foliosa in northern California. In sandy constructed marshes planted 5 and 10 years before this study,S. foliosa had lower belowground tissue N, lower N crop (%N×biomass), and shallower roots than in the adjacent natural marsh. We took advantage of a 2-yr, large-scale fertilization project being performed in the older constructed marsh and examined biomass and N storage after N additions. Although there was a trend toward N accumulation with fertilization, N crop remained at approximately 50% of natural marsh levels, unlike the large aboveground responses to N addition in our previous studies. Lower belowground reserves help to explain poor aerial growth in the created marshes and suggest the need for finer sediments (with greater potential for holding and supplying nutrients) to sustain (S. foliosa. While fine sediments are beginning to accumulate on the surface of the created marshes, vertical accretion is more likely to shift the plant community toward other species than to enhanceS. foliosa growth. We suggest salvaging and importing fine, organic marsh sediments or providing organic amendments to establish proper substrate conditions. Overexcavating and allowing fine sediments to accumulate remains an option, although the time scale is unpredictable due to the stochasticity of accretion events.  相似文献   
42.
A better understanding of stormwater generation and solute sources is needed to improve the protection of aquatic ecosystems, infrastructure, and human health from large runoff events. Much of our understanding of water and solutes produced during stormflow comes from studies of individual, small headwater catchments. This study compared many different types of catchments during a single large event to help isolate landscape controls on streamwater and solute generation, including human‐impacted land cover. We used a distributed network of specific electrical conductivity sensors to trace storm response during the post‐tropical cyclone Sandy event of October 2012 at 29 catchments across the state of New Hampshire. A citizen science sensor network, Lotic Volunteer for Temperature, Electrical Conductivity, and Stage, provided a unique opportunity to investigate high‐temporal resolution stream behavior at a broad spatial scale. Three storm response metrics were analyzed in this study: (a) fraction of new water contributing to the hydrograph; (b) presence of first flush (mobilization of solutes during the beginning of the rain event); and (c) magnitude of first flush. We compared new water and first flush to 64 predictor attributes related to land cover, soil, topography, and precipitation. The new water fraction was positively correlated with low and medium intensity development in the catchment and riparian buffers and with the precipitation from a rain event 9 days prior to Sandy. The presence of first flush was most closely related (positively) to soil organic matter. Magnitude of first flush was not strongly related to any of the catchment variables. Our results highlight the potentially important role of human landscape modification in runoff generation at multiple spatial scales and the lack of a clear role in solute flushing. Further development of regional‐scale in situ sensor networks will provide better understanding of stormflow and solute generation across a wide range of landscape conditions.  相似文献   
43.
Organic compounds are removed from the atmosphere and deposited to the Earth's surface via precipitation. In this study, we quantified variations of dissolved organic carbon (DOC) in precipitation during storm events at the Shale Hills Critical Zone Observatory, a forested watershed in central Pennsylvania (USA). Precipitation samples were collected consecutively throughout the storm during 13 events, which spanned a range of seasons and synoptic meteorological conditions, including a hurricane. Further, we explored factors that affect the temporal variability by considering relationships of DOC in precipitation with atmospheric and storm characteristics. Concentrations and chemical composition of DOC changed considerably during storms, with the magnitude of change within individual events being comparable or higher than the range of variation in average event composition among events. Although some previous studies observed that concentrations of other elements in precipitation typically decrease over the course of individual storm events, results of this study show that DOC concentrations in precipitation are highly variable. During most storm events, concentrations decreased over time, possibly as a result of washing out of the below‐cloud atmosphere. However, increasing concentrations that were observed in the later stages of some storm events highlight that DOC removal with precipitation is not merely a dilution response. Increases in DOC during events could result from advection of air masses, local emissions during breaks in precipitation, or chemical transformations in the atmosphere that enhance solubility of organic carbon compounds. This work advances understanding of processes occurring during storms that are relevant to studies of atmospheric chemistry, carbon cycling, and ecosystem responses.  相似文献   
44.
Detecting broad scale spatial patterns across the South American rainforest biome is still a major challenge. Although several countries do possess their own, more or less detailed land-cover map, these are based on classifications that appear largely discordant from a country to another. Up to now, continental scale remote sensing studies failed to fill this gap. They mostly result in crude representations of the rainforest biome as a single, uniform vegetation class, in contrast with open vegetations. A few studies identified broad scale spatial patterns, but only when they managed to map a particular forest characteristic such as biomass. The main objective of this study is to identify, characterize and map distinct forest landscape types within the evergreen lowland rainforest at the sub-continental scale of the Guiana Shield (north-east tropical South-America 10° North-2° South; 66° West-50° West). This study is based on the analysis of a 1-year daily data set (from January 1st to December 31st, 2000) from the VEGETATION sensor onboard the SPOT-4 satellite (1-km spatial resolution). We interpreted remotely sensed landscape classes (RSLC) from field and high resolution remote sensing data of 21 sites in French Guiana. We cross-analyzed remote sensing data, field observations and environmental data using multivariate analysis. We obtained 33 remotely sensed landscape classes (RSLC) among which five forest-RSLC representing 78% of the forested area. The latter were classified as different broad forest landscape types according to a gradient of canopy openness. Their mapping revealed a new and meaningful broad-scale spatial pattern of forest landscape types. At the scale of the Guiana Shield, we observed a spatial patterns similarity between climatic and forest landscape types. The two most open forest-RSLCs were observed mainly within the north-west to south-east dry belt. The three other forest-RSLCs were observed in wetter and less anthropized areas, particularly in the newly recognized “Guianan dense forest arch”. Better management and conservation policies, as well as improvement of biological and ecological knowledge, require accurate and stable representations of the geographical components of ecosystems. Our results represent a decisive step in this way for the Guiana Shield area and contribute to fill one of the major shortfall in the knowledge of tropical forests.  相似文献   
45.
Denamiel  Cléa  Pranić  Petra  Quentin  Florent  Mihanović  Hrvoje  Vilibić  Ivica 《Climate Dynamics》2020,55(9-10):2483-2509

This numerical work aims to better understand the behavior of extreme Adriatic Sea wave storms under projected climate change. In this spirit, 36 characteristic events—22 bora and 14 sirocco storms occurring between 1979 and 2019, were selected and ran in evaluation mode in order to estimate the skill of the kilometer-scale Adriatic Sea and Coast (AdriSC) modelling suite used in this study and to provide baseline conditions for the climate change impact. The pseudo-global warming (PGW) methodology—which imposes an additional climatological change to the forcing used in the evaluation simulations, was implemented, for the very first time, for a coupled ocean–wave–atmosphere model and used to assess the behavior of the selected storms under Representative Concentration Pathway (RCP) 4.5 and RCP 8.5 greenhouse gas projections. The findings of this experiment are that, on the one hand, the AdriSC model is found capable of reproducing both the Adriatic waves associated with the 36 storms and the northern Adriatic surges occurring during the sirocco events and, on the other hand, the significant wave heights and peak periods are likely to decrease during all future extreme events but most particularly during bora storms. The northern Adriatic storm surges are in consequence also likely to decrease during sirocco events. As it was previously demonstrated that the Adriatic extreme wind-wave events are likely to be less intense in a future warmer climate, this study also proved the validity of applying the PGW methodology to coupled ocean–wave–atmosphere models at the coastal and nearshore scales.

  相似文献   
46.
We report a petrographic and mineralogical survey of Paris, a new CM chondrite considered to be the least‐altered CM identified so far (Hewins et al. 2014 ). Compared to other CMs, Paris exhibits (1) a higher concentration of Fe‐Ni metal beads, with nickel contents in the range 4.1–8.1 wt%; (2) the systematic presence of thin lamellae and tiny blebs of pentlandite in pyrrhotite grains; and (3) ubiquitous tochilinite/cronstedtite associations with higher FeO/SiO2 and S/SiO2 ratios. In addition, Paris shows the highest concentration of trapped 36Ar reported so far for a CM chondrite (Hewins et al. 2014 ). In combination with the findings of previous studies, our data confirm the reliability of (1) the alteration sequence based on the chemical composition of tochilinite/cronstedtite associations to quantify the fluid alteration processes and (2) the use of Cr content variability in type II ferroan chondrule olivine as a proxy of thermal metamorphism. In contrast, the scales based on (1) the Fe3+ content of serpentine in the matrix to estimate the degree of aqueous alteration and (2) the chemical composition of Fe‐Ni metal beads for quantifying the intensity of the thermal metamorphism are not supported by the characteristics of Paris. It also appears that the amount of trapped 36Ar is a sensitive indicator of the secondary alteration modifications experienced by chondrites, for both aqueous alteration and thermal metamorphism. Considering Paris, our data suggest that this chondrite should be classified as type 2.7 as it suffered limited but significant fluid alteration and only mild thermal metamorphism. These results point out that two separated scales should be used to quantify the degree of the respective role of aqueous alteration and thermal metamorphism in establishing the characteristics of CM chondrites.  相似文献   
47.
48.
We have analysed MgH A 2 -X 2(0.0), (1.1), (2.2), (0.1) and (1.2) absorption bands in a sunspot spectrum. By two different methods, which are almost independent of the estimated value of the correction for stray light, we have determined the solar isotopic ratios of magnesium. These ratios are equal to the terrestrial ones - 24Mg25Mg26Mg = 801010.  相似文献   
49.
The Lake Afourgagh sediment record and facies successions provide an outstanding example of environmentally controlled carbonate sedimentation. Afourgagh is a small, shallow permanent lake located in the Middle‐Atlas Mountains in Morocco in a karstic context. It is fed by ground waters that are relatively enriched in Mg resulting from the leaching of the Jurassic dolomitic bedrock of the catchment. This eutrophic lake is episodically restricted and characterized by alkaline waters with a fluctuating high Mg/Ca ratio. The maximum extension of the Holocene shoreline coincides with evidence of a lake stabilization level corresponding to the outflow of the lake through a wadi. Lakeshore terrace sediments deposited on an alluvial fan siltstone during the past ca 2500 cal yr bp comprise four main facies: a littoral crust, palaeosols, palustrine silts and charophyte tufas, which reflect different environments from the shoreline toward the deeper water. In the more distal parts, the charophyte tufas display a well‐expressed lamination punctuated by the development of microstromatolites on algae thalli. The mineralogical composition of the carbonates is linked to the facies. While the charophyte tufas are characterized by a relatively high content in aragonite, in addition to low‐Mg calcite, the littoral crust is mainly composed of magnesite. This pattern is related to the evolving chemistry of water due to the influence of charophyte proliferation during dry summers. Calcium‐carbonate precipitation on algae thalli (both bioinduced and microbially mediated) progressively induces an increase in the Mg/Ca ratio of the lake water, while the capillary evaporation of shallow ground waters causes precipitation of a magnesite precursor on the shoreline, producing magnesite during early diagenesis. This effect is characteristic of two episodes: part of the Roman Warm Period and the beginning of the Dark Age Cold Period. The carbonate mineralogy of the different depositional sequences at Afourgagh indicates lake‐level and water‐chemistry fluctuations under a climatic influence. Therefore, among other regional records, the Lake Afourgagh sedimentary record provides useful evidence for reconstructing these environmental changes.  相似文献   
50.
The biostratigraphy and diversity patterns of terrestrial, hoofed mammals help to understand the transition between the Palaeogene and the Neogene in Western Europe. Three phases are highlighted: (1) the beginning of the Arvernian (Late Oligocene, MP25-27) was characterised by a “stable” faunal composition including the last occurrences of taxa inherited from the Grande Coupure and of newly emerged ones; (2) the latest Arvernian (Late Oligocene, MP28-30) and the Agenian (Early Miocene, MN1-2) saw gradual immigrations leading to progressive replacement of the Arvernian, hoofed mammals towards the establishment of the “classical” Agenian fauna; (3) the beginning of the Orleanian (Early Miocene, MN3-4) coincided with the African-Eurasian faunal interchanges of the Proboscidean Datum Events and led to complete renewal of the Agenian taxa and total disappearance of the last Oligocene survivors. Faunal balances, poly-cohorts and particularly cluster analyses emphasise these three periods and define a temporally well-framed Oligocene–Miocene transition between MP28 and MN2. This transition started in MP28 with a major immigration event, linked to the arrival in Europe of new ungulate taxa, notably a stem group of “Eupecora” and the small anthracothere Microbunodon. Due to its high significance in the reorganisation of European, hoofed-mammal communities, we propose to name it the Microbunodon Event. This first step was followed by a phase of extinctions (MP29-30) and later by a phase of regional speciation and diversification (MN1-2). The Oligocene–Miocene faunal transition ended right before the two-phased turnover linked to the Proboscidean Datum Events (MN3-4). Locomotion types of rhinocerotids and ruminants provide new data on the evolution of environments during the Oligocene–Miocene transition and help understand the factors controlling these different phases. Indeed, it appears that the faunal turnovers were primarily directed by migrations, whereas the Agenian transitional phase mainly witnessed speciations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号