首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   15篇
  国内免费   2篇
测绘学   14篇
大气科学   48篇
地球物理   132篇
地质学   106篇
海洋学   20篇
天文学   39篇
综合类   6篇
自然地理   25篇
  2022年   3篇
  2021年   7篇
  2020年   7篇
  2018年   6篇
  2017年   10篇
  2016年   10篇
  2015年   9篇
  2014年   15篇
  2013年   19篇
  2012年   22篇
  2011年   16篇
  2010年   19篇
  2009年   19篇
  2008年   16篇
  2007年   12篇
  2006年   12篇
  2005年   13篇
  2004年   8篇
  2003年   8篇
  2002年   5篇
  2001年   13篇
  2000年   13篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   4篇
  1991年   3篇
  1990年   5篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1984年   4篇
  1982年   7篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1976年   3篇
  1975年   5篇
  1971年   2篇
  1969年   2篇
  1966年   2篇
  1964年   2篇
  1957年   2篇
  1956年   3篇
  1954年   4篇
  1951年   2篇
排序方式: 共有390条查询结果,搜索用时 187 毫秒
311.
High‐precision isotope data of meteorites show that the long‐standing notion of a “chondritic uniform reservoir” is not always applicable for describing the isotopic composition of the bulk Earth and other planetary bodies. To mitigate the effects of this “isotopic crisis” and to better understand the genetic relations of meteorites and the Earth‐forming reservoir, we performed a comprehensive petrographic, elemental, and multi‐isotopic (O, Ca, Ti, Cr, Ni, Mo, Ru, and W) study of the ungrouped achondrites NWA 5363 and NWA 5400, for both of which terrestrial O isotope signatures were previously reported. Also, we obtained isotope data for the chondrites Pillistfer (EL6), Allegan (H6), and Allende (CV3), and compiled available anomaly data for undifferentiated and differentiated meteorites. The chemical compositions of NWA 5363 and NWA 5400 are strikingly similar, except for fluid mobile elements tracing desert weathering. We show that NWA 5363 and NWA 5400 are paired samples from a primitive achondrite parent‐body and interpret these rocks as restite assemblages after silicate melt extraction and siderophile element addition. Hafnium‐tungsten chronology yields a model age of 2.2 ± 0.8 Myr after CAI, which probably dates both of these events within uncertainty. We confirm the terrestrial O isotope signature of NWA 5363/NWA 5400; however, the discovery of nucleosynthetic anomalies in Ca, Ti, Cr, Mo, and Ru reveals that the NWA5363/NWA 5400 parent‐body is not the “missing link” that could explain the composition of the Earth by the mixing of known meteorites. Until this “missing link” or a direct sample of the terrestrial reservoir is identified, guidelines are provided of how to use chondrites for estimating the isotopic composition of the bulk Earth.  相似文献   
312.
This paper summarizes the main characteristics of the RCP8.5 scenario. The RCP8.5 combines assumptions about high population and relatively slow income growth with modest rates of technological change and energy intensity improvements, leading in the long term to high energy demand and GHG emissions in absence of climate change policies. Compared to the total set of Representative Concentration Pathways (RCPs), RCP8.5 thus corresponds to the pathway with the highest greenhouse gas emissions. Using the IIASA Integrated Assessment Framework and the MESSAGE model for the development of the RCP8.5, we focus in this paper on two important extensions compared to earlier scenarios: 1) the development of spatially explicit air pollution projections, and 2) enhancements in the land-use and land-cover change projections. In addition, we explore scenario variants that use RCP8.5 as a baseline, and assume different degrees of greenhouse gas mitigation policies to reduce radiative forcing. Based on our modeling framework, we find it technically possible to limit forcing from RCP8.5 to lower levels comparable to the other RCPs (2.6 to 6 W/m2). Our scenario analysis further indicates that climate policy-induced changes of global energy supply and demand may lead to significant co-benefits for other policy priorities, such as local air pollution.  相似文献   
313.
Seeded, solid-media piston-cylinder runs of unusually long duration up to 31 days indicate growth or persistence of synthetic gedrite of the composition □Mg6Al[AlSi7O22](OH)2(=6:1:7), prepared from the purest chemicals available, at 10 kbar water pressure and 800 °C. Conversely, breakdown was observed at 11 kbar and 850 °C to aluminous enstatite, Al2SiO5, and a melt of the composition MgO·Al2O3·8SiO2. Thus, pure gedrite free of iron, sodium, and calcium is likely to have only a small PT stability field in the MASH system, estimated as 10 ± 1 kbar, 800 ± 20 °C, even though metastable growth of gedrite can be observed over a larger PT range. A second starting material with the anhydrous composition 5MgO · 2Al2O3 · 6SiO2 also yielded gedrite of the composition 6:1:7, together with more aluminous phases such as kyanite, corundum or sapphirine, thus suggesting that the end-member gedrite defined as □Mg5Al2[Al2Si6O22](OH)2(=5:2:6) by the IMA Commission on New Minerals and Mineral Names probably does not exist. With the use of this second starting material, which contains FeNaCa impurities, growth of 6:1:7-gedrite was observed over a still wider PT-range. Seeded runs indicate that the true stability field of such slightly impure 6:1:7-gedrites may also be larger than that of the pure MASH phase and extend at least to 15 kbar, 800 °C. There is, thus, a remarkable stabilization effect on the orthoamphibole structure by impurities amounting only to a total of less than one weight percent of oxides in the starting material. The gedrites synthesized are structurally well ordered amphiboles nearly free of chain multiplicity faults, as revealed by HRTEM. The X-ray diffraction work on the gedrites synthesized yielded the smallest cell volume yet reported for this phase. The small stability field of the pure MASH gedrite is intersected by the upper pressure stability limit of hydrous cordierite for excess-H2O conditions, thus leading to complicated phase relations for both gedrite and cordierite involving the additional phases aluminous enstatite, talc, quartz, Al2SiO5, melt and perhaps boron-free kornerupine. Received: 29 July 1998 / Accepted: 7 January 1999  相似文献   
314.
Coronal mass ejections (CMEs) are large-scale eruptions of plasma from the Sun, which play an important role in space weather. Faraday rotation is the rotation of the plane of polarization that results when a linearly polarized signal passes through a magnetized plasma such as a CME. Faraday rotation is proportional to the path integral through the plasma of the electron density and the line-of-sight component of the magnetic field. Faraday-rotation observations of a source near the Sun can provide information on the plasma structure of a CME shortly after launch. We report on simultaneous white-light and radio observations made of three CMEs in August 2012. We made sensitive Very Large Array (VLA) full-polarization observations using 1?–?2 GHz frequencies of a constellation of radio sources through the solar corona at heliocentric distances that ranged from 6?–?\(15~\mathrm{R}_{\odot}\). Two sources (0842+1835 and 0900+1832) were occulted by a single CME, and one source (0843+1547) was occulted by two CMEs. In addition to our radioastronomical observations, which represent one of the first active hunts for CME Faraday rotation since Bird et al. (Solar Phys., 98, 341, 1985) and the first active hunt using the VLA, we obtained white-light coronagraph images from the Large Angle and Spectrometric Coronagraph (LASCO) C3 instrument to determine the Thomson-scattering brightness [\(\mathrm{B}_{\mathrm{T}}\)], providing a means to independently estimate the plasma density and determine its contribution to the observed Faraday rotation. A constant-density force-free flux rope embedded in the background corona was used to model the effects of the CMEs on \(\mathrm{B}_{\mathrm{T}}\) and Faraday rotation. The plasma densities (\(6\,\mbox{--}\,22\times10^{3}~\mbox{cm}^{-3}\)) and axial magnetic-field strengths (2?–?12 mG) inferred from our models are consistent with the modeling work of Liu et al. (Astrophys. J., 665, 1439, 2007) and Jensen and Russell (Geophys. Res. Lett., 35, L02103, 2008), as well as previous CME Faraday-rotation observations by Bird et al. (1985).  相似文献   
315.
For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bitrates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disc and off-limb coronal-loop oscillation time-series observed by AIA/SDO.  相似文献   
316.
Large‐scale inversion methods have been recently developed and permitted now to considerably reduce the computation time and memory needed for inversions of models with a large amount of parameters and data. In this work, we have applied a deterministic geostatistical inversion algorithm to a hydraulic tomography investigation conducted in an experimental field site situated within an alluvial aquifer in Southern France. This application aims to achieve a 2‐D large‐scale modeling of the spatial transmissivity distribution of the site. The inversion algorithm uses a quasi‐Newton iterative process based on a Bayesian approach. We compared the results obtained by using three different methodologies for sensitivity analysis: an adjoint‐state method, a finite‐difference method, and a principal component geostatistical approach (PCGA). The PCGA is a large‐scale adapted method which was developed for inversions with a large number of parameters by using an approximation of the covariance matrix, and by avoiding the calculation of the full Jacobian sensitivity matrix. We reconstructed high‐resolution transmissivity fields (composed of up to 25,600 cells) which generated good correlations between the measured and computed hydraulic heads. In particular, we show that, by combining the PCGA inversion method and the hydraulic tomography method, we are able to substantially reduce the computation time of the inversions, while still producing high‐quality inversion results as those obtained from the other sensitivity analysis methodologies.  相似文献   
317.
Hydraulic fractures generated by fluid injection in rock formations are often mapped by seismic monitoring. In many cases, the microseismicity is asymmetric relative to the injection well, which has been interpreted by stress gradient along the direction of the hydraulic fracture. We present a mathematical model of asymmetric hydrofracture growth based on relations between the solid‐phase stress and the fracture hydraulics. For single fracture and single injection point, the model has three parameters, hydraulic conductivities of the fracture wings, and normalised stress gradient and predicts the positions of the fracture tips as functions of time. The model is applied to a set of microseismic event locations that occurred during and after an injection process. Two different methods are suggested that make it possible to delineate the fracture tips from the set of microseismic events. This makes it possible to determine the model parameters and to check the agreement between the model prediction and the measured data. The comparison of the measured and modelled growth of fracture wings supports both the assumption of the non‐zero stress gradient and the existence of the post‐injection unilateral growth.  相似文献   
318.
The universal soil loss equation (USLE) is the most frequently applied erosion prediction model and it is also implemented as an official decision‐making instrument for agricultural regulations. The USLE itself has been already validated using different approaches. Additional errors, however, arise from input data and interpolation procedures that become necessary for field‐specific predictions on a national scale for administrative purposes. In this study, predicted event soil loss using the official prediction system in Bavaria (Germany) was validated by comparison with aerial photo erosion classifications of 8100 fields. Values for the USLE factors were mainly taken from the official Bavarian high‐resolution (5 × 5 m2) erosion cadastre. As series of erosion events were examined, the cover and management factor was replaced by the soil loss ratio. The event erosivity factor was calculated from high‐resolution (1 × 1 km2, 5 min), rain gauge‐adjusted radar rain data (RADOLAN). Aerial photo erosion interpretation worked sufficiently well and average erosion predictions and visual classifications correlated closely. This was also true for data broken down to individual factors and different crops. There was no reason to assume a general invalidity of the USLE and the official parametrization procedures. Event predictions mainly suffered from errors in the assumed crop stage period and tillage practices, which do not reflect interannual and farm‐specific variation. In addition, the resolution of radar data (1 km2) did not seem to be sufficient to predict short‐term erosion on individual fields given the strong spatial gradients within individual rains. The quality of the input data clearly determined prediction quality. Differences between USLE predictions and observations are most likely caused by parametrization weaknesses but not by a failure of the model itself. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
319.
Sulfur hexafluoride (SF6) is an established tracer for use in managed aquifer recharge projects. SF6 exsolves from groundwater when it encounters trapped air according to Henry's law. This results in its retardation relative to groundwater flow, which can help determine porous media saturation and flow dynamics. SF6 and the conservative, nonpartitioning tracer, bromide (Br added as KBr), were introduced to recharge water infiltrated into stacked glacial aquifers in Thurston County, Washington, providing the opportunity to observe SF6 partitioning. Br, which is assumed to travel at the same velocity as the groundwater, precedes SF6 at most monitoring wells (MWs). Average groundwater velocity in the unconfined aquifer in the study area ranges from 3.9 to 40 m/d, except in the southwestern corner where it is slower. SF6 in the shallow aquifer exhibits an average retardation factor of 2.5 ± 3.8, suggesting an air-to-water ratio on the order of 10−3 to 10−2 in the pore space. Notable differences in tracer arrival times at adjacent wells indicate very heterogeneous conductivity. One MW exhibits double peaks in concentrations of both tracers with different degrees of retardation for the first and second peaks. This suggests multiple flowpaths to the well with variable saturation. The confining layer between the upper two aquifers appears to allow intermittent connection between aquifers but serves as an aquitard in most areas. This study demonstrates the utility of SF6 partitioning for evaluating hydrologic conditions at prospective recharge sites.  相似文献   
320.
Uncertainties in the climate response to a doubling of atmospheric CO2 concentrations are quantified in a perturbed land surface parameter experiment. The ensemble of 108 members is constructed by systematically perturbing five poorly constrained land surface parameters of global climate model individually and in all possible combinations. The land surface parameters induce small uncertainties at global scale, substantial uncertainties at regional and seasonal scale and very large uncertainties in the tails of the distribution, the climate extremes. Climate sensitivity varies across the ensemble mainly due to the perturbation of the snow albedo parameterization, which controls the snow albedo feedback strength. The uncertainty range in the global response is small relative to perturbed physics experiments focusing on atmospheric parameters. However, land surface parameters are revealed to control the response not only of the mean but also of the variability of temperature. Major uncertainties are identified in the response of climate extremes to a doubling of CO2. During winter the response both of temperature mean and daily variability relates to fractional snow cover. Cold extremes over high latitudes warm disproportionately in ensemble members with strong snow albedo feedback and large snow cover reduction. Reduced snow cover leads to more winter warming and stronger variability decrease. As a result uncertainties in mean and variability response line up, with some members showing weak and others very strong warming of the cold tail of the distribution, depending on the snow albedo parametrization. The uncertainty across the ensemble regionally exceeds the CMIP3 multi-model range. Regarding summer hot extremes, the uncertainties are larger than for mean summer warming but smaller than in multi-model experiments. The summer precipitation response to a doubling of CO2 is not robust over many regions. Land surface parameter perturbations and natural variability alter the sign of the response even over subtropical regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号