首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1280篇
  免费   52篇
  国内免费   20篇
测绘学   21篇
大气科学   107篇
地球物理   321篇
地质学   430篇
海洋学   133篇
天文学   198篇
综合类   7篇
自然地理   135篇
  2021年   17篇
  2020年   20篇
  2019年   23篇
  2018年   30篇
  2017年   23篇
  2016年   30篇
  2015年   32篇
  2014年   42篇
  2013年   68篇
  2012年   48篇
  2011年   41篇
  2010年   47篇
  2009年   70篇
  2008年   57篇
  2007年   47篇
  2006年   47篇
  2005年   42篇
  2004年   27篇
  2003年   49篇
  2002年   26篇
  2001年   38篇
  2000年   33篇
  1999年   20篇
  1998年   21篇
  1997年   21篇
  1996年   9篇
  1995年   14篇
  1994年   17篇
  1993年   19篇
  1992年   8篇
  1991年   14篇
  1990年   19篇
  1989年   15篇
  1987年   13篇
  1986年   7篇
  1985年   20篇
  1984年   19篇
  1983年   19篇
  1982年   30篇
  1981年   24篇
  1980年   22篇
  1979年   20篇
  1978年   18篇
  1977年   21篇
  1976年   18篇
  1975年   13篇
  1974年   16篇
  1973年   18篇
  1972年   6篇
  1971年   8篇
排序方式: 共有1352条查询结果,搜索用时 265 毫秒
71.
Strain style, magnitude and distribution within mass‐transport complexes (MTCs) are important for understanding the process evolution of submarine mass flows and for estimating their runout distances. Structural restoration and quantification of strain in gravitationally driven passive margins have been shown to approximately balance between updip extensional and downdip contractional domains; such an exercise has not yet been attempted for MTCs. We here interpret and structurally restore a shallowly buried (c. 1,500 mbsf) and well‐imaged MTC, offshore Uruguay using a high‐resolution (12.5 m vertical and 15 × 12.5 m horizontal resolution) three‐dimensional seismic‐reflection survey. This allows us to characterise and quantify vertical and lateral strain distribution within the deposit. Detailed seismic mapping and attribute analysis shows that the MTC is characterised by a complicated array of kinematic indicators, which vary spatially in style and concentration. Seismic‐attribute extractions reveal several previously undocumented fabrics preserved in the MTC, including internal shearing in the form of sub‐orthogonal shear zones, and fold‐thrust systems within the basal shear zone beneath rafted‐blocks. These features suggest multiple transport directions and phases of flow during emplacement. The MTC is characterised by a broadly tripartite strain distribution, with extensional (e.g. normal faults), translational and contractional (e.g. folds and thrusts) domains, along with a radial frontally emergent zone. We also show how strain is preferentially concentrated around intra‐MTC rafted‐blocks due to their kinematic interactions with the underlying basal shear zone. Overall, and even when volume loss within the frontally emergent zone is included, a strain difference between extension (1.6–1.9 km) and contraction (6.7–7.3 km) is calculated. We attribute this to a combination of distributed, sub‐seismic, ‘cryptic’ strain, likely related to de‐watering, grain‐scale deformation and related changes in bulk sediment volume. This work has implications for assessing MTCs strain distribution and provides a practical approach for evaluating structural interpretations within such deposits.  相似文献   
72.
We studied a data set of 28 well‐preserved lunar craters in the transitional (simple‐to‐complex) regime with the aim of investigating the underlying cause(s) for morphological differences of these craters in mare versus highland terrains. These transitional craters range from 15 to 42 km in diameter, demonstrating that the transition from simple to complex craters is not abrupt and occurs over a broad diameter range. We examined and measured the following crater attributes: depth (d), diameter (D), floor diameter (Df), rim height (h), and wall width (w), as well as the number and onset of terraces and rock slides. The number of terraces increases with increasing crater size and, in general, mare craters possess more terraces than highland craters of the same diameter. There are also clear differences in the d/D ratio of mare versus highland craters, with transitional craters in mare targets being noticeably shallower than similarly sized highland craters. We propose that layering in mare targets is a major driver for these differences. Layering provides pre‐existing planes of weakness that facilitate crater collapse, thus explaining the overall shallower depths of mare craters and the onset of crater collapse (i.e., the transition from simple to complex crater morphology) at smaller diameters as compared to highland craters. This suggests that layering and its interplay with target strength and porosity may play a more significant role than previously considered.  相似文献   
73.
The carbon-13 nuclear magnetic resonance spectra of fossil resins from New Zealand and Australia have been compared with those of modern and semifossilized materials. The great majority of the fossilized samples have strong spectral similarities to modern Agathis resins and to North American fossil resins, which have been attributed to Agathis. The Agathis-related spectra are different from those of modern Hymenaea and Araucaria. A small subgroup of Late Cretaceous resins from Australia and Papua New Guinea appears to derive from a different botanical source and shows strong resemblances to Claiborne amber from Arkansas. The spectral resonances of the exomethylene carbons degrade over time and on average provide an approximate measure of the geological age of Agathis-related fossil resins. © 1993 John Wiley & Sons, Inc.  相似文献   
74.
A zooplankton index of biotic integrity was developed for the polyhaline waters of the Chesapeake Bay using data from a long-term environmental assessment program in which both zooplankton and water quality were regularly monitored. Summer (July to September) sampling events were classified as either coming from impaired or reference (least-impaired) conditions based on water quality conditions. Seventeen zooplankton community metrics were evaluated under these criteria and nine were chosen for a composite index. These were the Simpson diversity index, and abundance of barnacle larvae, rotifers, cladocerans, copepods, total mesozooplankton, and predators. The composite index of biotic integrity correctly classified about 94% of the impaired samples and about 82% of the reference samples. Average classification efficiency was 88%. This index appears to be an effective measure of eutrophication for the summer polyhaline waters of the Chesapeake Bay ecosystem.  相似文献   
75.
76.
77.
The WOCE-era 3-D Pacific Ocean circulation and heat budget   总被引:2,自引:0,他引:2  
To address questions concerning the intensity and spatial structure of the three-dimensional circulation within the Pacific Ocean and the associated advective and diffusive property flux divergences, data from approximately 3000 high-quality hydrographic stations collected on 40 zonal and meridional cruises have been merged into a physically consistent model. The majority of the stations were occupied as part of the World Ocean Circulation Experiment (WOCE), which took place in the 1990s. These data are supplemented by a few pre-WOCE surveys of similar quality, and time-averaged direct-velocity and historical hydrographic measurements about the equator.An inverse box model formalism is employed to estimate the absolute along-isopycnal velocity field, the magnitude and spatial distribution of the associated diapycnal flow and the corresponding diapycnal advective and diffusive property flux divergences. The resulting large-scale WOCE Pacific circulation can be described as two shallow overturning cells at mid- to low latitudes, one in each hemisphere, and a single deep cell which brings abyssal waters from the Southern Ocean into the Pacific where they upwell across isopycnals and are returned south as deep waters. Upwelling is seen to occur throughout most of the basin with generally larger dianeutral transport and greater mixing occurring at depth. The derived pattern of ocean heat transport divergence is compared to published results based on air–sea flux estimates. The synthesis suggests a strongly east/west oriented pattern of air–sea heat flux with heat loss to the atmosphere throughout most of the western basins, and a gain of heat throughout the tropics extending poleward through the eastern basins. The calculated meridional heat transport agrees well with previous hydrographic estimates. Consistent with many of the climatologies at a variety of latitudes as well, our meridional heat transport estimates tend toward lower values in both hemispheres.  相似文献   
78.
In this paper, we compare the U‐Pb zircon age distribution pattern of sample 14311 from the Apollo 14 landing site with those from other breccias collected at the same landing site. Zircons in breccia 14311 show major age peaks at 4340 and 4240 Ma and small peaks at 4110, 4030, and 3960 Ma. The zircon age patterns of breccia 14311 and other Apollo 14 breccias are statistically different suggesting a separate provenance and transportation history for these breccias. This interpretation is supported by different U‐Pb Ca‐phosphate and exposure ages for breccia 14311 (Ca‐phosphate age: 3938 ± 4 Ma, exposure age: ~550–660 Ma) from the other Apollo 14 breccias (Ca‐phosphate age: 3927 ± 2 Ma, compatible with the Imbrium impact, exposure age: ~25–30 Ma). Based on these observations, we consider two hypotheses for the origin and transportation history of sample 14311. (1) Breccia 14311 was formed in the Procellarum KREEP terrane by a 3938 Ma‐old impact and deposited near the future site of the Imbrium basin. The breccia was integrated into the Fra Mauro Formation during the deposition of the Imbrium impact ejecta at 3927 Ma. The zircons were annealed by mare basalt flooding at 3400 Ma at Apollo 14 landing site. Eventually, at approximately 660 Ma, a small and local impact event excavated this sample and it has been at the surface of the Moon since this time. (2) Breccia 14311 was formed by a 3938 Ma‐old impact. The location of the sample is not known at that time but at 3400 Ma, it was located nearby or buried by hot basaltic flows. It was transported from where it was deposited to the Apollo 14 landing site by an impact at approximately 660 Ma, possibly related to the formation of the Copernicus crater and has remained at the surface of the Moon since this event. This latter hypothesis is the simplest scenario for the formation and transportation history of the 14311 breccia.  相似文献   
79.
Geophysical data collected on three U.S. Naval Oceanographic Office cruises to the Galapagos Rise are presented. These data allow definition of the morphology and structure of the Galapagos Rise.A postulated “hot spot” beneath the Galapagos platform is suggested as the cause of: (1) decreased seismicity along the spreading center for a 400 km E—W distance from the islands; (2) distinctive petro-chemistry of tholeiites from the islands and adjacent oceanic crust generated by the Galapagos Rise; (3) high-amplitude magnetic anomalies in a 1,000 km E—W band including and just north of the Galapagos platform; and (4) morphologic shape and the regionally elevated sea floor of the Galapagos Rise as it approaches the insular platform.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号