首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   640篇
  免费   30篇
  国内免费   11篇
测绘学   38篇
大气科学   86篇
地球物理   152篇
地质学   274篇
海洋学   62篇
天文学   34篇
综合类   5篇
自然地理   30篇
  2022年   6篇
  2021年   26篇
  2020年   9篇
  2019年   15篇
  2018年   32篇
  2017年   24篇
  2016年   34篇
  2015年   29篇
  2014年   38篇
  2013年   45篇
  2012年   35篇
  2011年   54篇
  2010年   44篇
  2009年   33篇
  2008年   37篇
  2007年   33篇
  2006年   40篇
  2005年   18篇
  2004年   14篇
  2003年   15篇
  2002年   13篇
  2001年   13篇
  2000年   10篇
  1999年   5篇
  1998年   9篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
  1973年   1篇
  1969年   1篇
  1965年   1篇
  1955年   1篇
  1953年   1篇
  1940年   1篇
  1939年   3篇
排序方式: 共有681条查询结果,搜索用时 0 毫秒
551.
A numerical model has been developed to simulate the spatiotemporal patterning of the ridge and slough landscape in wetlands, characterized by crests (ridges) and valleys (sloughs) that are elongated parallel to the direction of water flow. The model formulation consists of governing equations for integrated surface water and groundwater flow, sediment transport, and soil accretion, as well as litter production by vegetation growth. The model simulations show how the spatial pattern self-organizes over time with the generation of ridges and sloughs through sediment deposition and erosion driven by the water flow field. The spatial and temporal distributions of the water depth, flow rates and sediment transport processes are caused by differential flow due to vegetation and topography heterogeneities. The model was parameterized with values that are representative of the Everglades wetland in the southern portion of the Florida peninsula in the USA. Model simulation sensitivity was tested with respect to numerical grid size, lateral vegetation growth and the rate of litter production. The characteristic wavelengths of the pattern in the directions along and perpendicular to flow that are simulated with this model develop over time into ridge and slough shapes that resemble field observations. Also, the simulated elevation differences between the ridges and sloughs are of the same order of those typically found in the field. The width of ridges and sloughs was found to be controlled by a lateral vegetation growth distance parameter in a simplified formulation of vegetation growth, which complements earlier modeling results in which a differential peat accretion mechanism alone did not reproduce observations of ridge and slough lateral wavelengths. The results of this work suggest that ridge and slough patterning occurs as a result of vegetation's ability to grow laterally, enhancing sediment deposition in ridge areas, balanced by increased sediment erosion in slough areas to satisfy flow continuity. The interplay between sediment transport, water flow and vegetation and soil dynamic processes needs to be explored further through detailed field experiments, using a model formulation such as the one developed in this work to guide data collection and interpretation. This should be one of the focus areas of future investigations of pattern formation and stability in ridge and slough areas.  相似文献   
552.
Iron oxide–apatite deposits are present in Upper Eocene pyroxene-quartz monzonitic rocks of the Zanjan district, northwestern Iran. Mineralization occurred in five stages: (1) deposition of disseminated magnetite and apatite in the host rock; (2) mineralization of massive and banded magnetite ores in veins and stockwork associated with minor brecciation and calcic alteration of host rocks; (3) deposition of sulfide ores together with potassic alteration; (4) formation of quartz and carbonate veins and sericite, chlorite, epidote, silica, carbonate, and tourmaline alteration; and (5) supergene alteration and weathering. U–Pb dating of monazite inclusions in the apatite indicates an age of 39.99?±?0.24 Ma, which is nearly coeval with the time of emplacement of the host quartz monzonite, supporting the genetic connection. Fluid inclusions in the apatite have homogenization temperatures of about 300 °C and oxygen isotopic compositions of the magnetite support precipitation from magmatic fluids. Late-stage quartz resulted from the introduction of a cooler, less saline, and isotopically depleted fluid. The iron oxide–apatite deposits in the Tarom area of the Zanjan district are typical of a magmatic–hydrothermal origin and are similar to the Kiruna-type deposits with respect to mineral assemblages, fabric and structure of the iron ores, occurrence of the ore bodies, and wall rock alteration.  相似文献   
553.
The paper details an investigation into non-dispersive soils, carried out as part of the geotechnical site investigation for the Morwell River and Strzelecki Highway relocation project at Morwell, Victoria, Australia. The investigation revealed that the quality of water used for Emerson testing could change the concept of soil dispersion. Water quality, in terms of total dissolved solids (TDS) in water, changed the dispersive properties of clays found in the area. Increase in TDS tends to decrease the dispersive/erosive characteristics of soils. As a consequence, soils can be identified as non-dispersive if the TDS levels of the water used in testing ranges from 100 to 200 mg/L. This was further evident in pinhole tests carried out on dispersive soils in river water (as opposed to distilled water) with a TDS of 200 mg/L. The pinhole testing for dispersive soils in river water did not show any erosion, whereas the same samples showed higher erosion in distilled water. Further research was conducted into establishing a turning point TDS (where water quality would not allow dispersive clays to form a colloidal cloud around a soil sample or where water quality will stop the dispersive/erosive characteristics of dispersive clays). The turning point TDS was identified as 105 mg/L.  相似文献   
554.
The anomalous entrance of water into groundwater systems can affect storage throughout long periods and normally relies on infrequent and irregular pulses of groundwater recharge defined by the term episodic recharge. Recently there was a groundwater recharge of large magnitude with unknown circumstances in the Caiuá aquifer. This unique event was explored in detail here and allowed to better understand the occurrence of such events in humid subtropical climates in South America. For this study, groundwater monitoring daily data from the Integrated Groundwater Monitoring Network was used combined with a specific yield obtained from geophysical wireline logging to obtain groundwater recharge rates. To improve the investigation, we also used a baseflow separation method to obtain the groundwater contribution into local rivers. The groundwater storage variations were also assessed by remote sensing with the GRACE data. Results showed the importance of high soil moisture storage on the occurrence of large episodic recharge events. We estimated that the groundwater recharger volumes derived from 1 year that included the unique episodic recharge observed (total of 866 mm for April 2015–March 2016) were comparable with the sum of 7 years of groundwater recharge (total of 867 mm). Atypical rainfall in winter periods were responsible for the increase in soil moisture that explained that unique event. GRACE-based GWS showed concordance detecting the occurrence of the unique episodic recharge. However, the variation in terms of volumes obtained by GRACE does not represent the behaviour observed in the aquifer by the WTF method. The results also indicated that changes in aquifer storage caused by episodic recharge events directly affect low flows in rivers over long periods. The main knowledge gap addressed here relates to exploring a unique episodic recharge event quite rare to observe with its long-term impacts on hydroclimatic variability over a humid subtropical portion of the Caiuá aquifer.  相似文献   
555.
As is common in suture zones, widespread high‐pressure rocks in the Caribbean region reached eclogite facies conditions close to ultrahigh‐pressure metamorphism. Besides eclogite lenses, abundant metapelitic rocks in the Chuacús complex (Guatemala Suture Zone) also preserve evidence for high‐pressure metamorphism. A comprehensive petrological and geochronological study was undertaken to constrain the tectonometamorphic evolution of eclogite and associated metapelite from this area in central Guatemala. The integration of field and petrological data allows the reconstruction of a previously unknown segment of the prograde P–T path and shows that these contrasting rock types share a common high‐pressure evolution. An early stage of high‐pressure/low‐temperature metamorphism at 18–20 kbar and 530–580°C is indicated by garnet core compositions as well as the nature and composition of mineral inclusions in garnet, including kyanite–jadeite–paragonite in an eclogite, and chloritoid–paragonite–rutile in a pelitic schist. Peak high‐pressure conditions are constrained at 23–25 kbar and 620–690°C by combining mineral assemblages, isopleth thermobarometry and Zr‐in‐rutile thermometry. A garnet/whole‐rock Lu‐Hf date of 101.8 ± 3.1 Ma in the kyanite‐bearing eclogite indicates the timing of final garnet growth at eclogite facies conditions, while a Lu‐Hf date of 95.5 ± 2.1 Ma in the pelitic schist reflects the average age of garnet growth spanning from an early eclogite facies evolution to a final amphibolite facies stage. Concordant U‐Pb LA‐ICP‐MS zircon data from the pelitic schist, in contrast, yield a mean age of 74.0 ± 0.5 Ma, which is equivalent to a U‐Pb monazite lower‐intercept age of 73.6 ± 2.0 Ma in the same sample, and comparable within errors with a less precise U‐Pb lower‐intercept age of 80 ± 13 Ma obtained in post‐eclogitic titanite from the kyanite‐bearing eclogite. These U‐Pb metamorphic ages are interpreted as dating an amphibolite facies overprint. Protolith U‐Pb zircon ages of 167.1 ± 4.2 Ma and 424.6 ± 5.0 Ma from two eclogite samples reveal that mafic precursors in the Chuacús complex originated in multiple tectonotemporal settings from the Silurian to Jurassic. The integration of petrological and geochronological data suggests that subduction of the continental margin of the North American plate (Chuacús complex) beneath the Greater Antilles arc occurred during an Albian‐Cenomanian pre‐collisional stage, and that a subsequent Campanian collisional stage is probably responsible of the amphibolite facies overprint and late syncollisional exhumation.  相似文献   
556.
Water‐fluxed melting has long been thought to have a minor influence on the thermal and chemical structure of the crust. We report here on amphibolite facies metasedimentary rocks from the 490–450 Ma Famatinian Orogen, in northwest Argentina, that have undergone water‐fluxed incongruent biotite melting at relatively low temperature, which have produced and lost a significant volume of melt. The protoliths consist of the turbiditic Puncoviscana Formation (Neoproterozoic to Early Cambrian). The field area exhibits a condensed metamorphic field gradient, from greenschist to amphibolite facies suprasolidus conditions, recording a low pressure almost isobaric path, reaching peak conditions estimated at 700°C at 4 kbar. Thermodynamic modelling in the MnNCKFMASHTO system is applied to investigate melting at such low pressure as a function of water content. Calculations using a typical turbidite composition show how small amounts of added free H2O may increase significantly the melt fraction with little or no change in either the melt or residual phase compositions. They indicate negligible difference in normative An–Ab–Or proportions and ferromagnesian contents between melts derived by dehydration and water‐fluxed melts. The same is true for the content of H2O dissolved in melts, which remains constant and the melt produced is granitic whether or not aqueous fluids are present. Thus, neither the residue nor the melt composition are indicators of the presence of aqueous fluids during anatexis. Recognizing the impact of small additions of H2O to an anatectic terrane may therefore be difficult. The most significant change related to water‐fluxing is the relative proportions of minerals and melt fraction, rather than the actual mineral assemblage. The modal proportion of feldspar decreased while those of cordierite and biotite increased in the residual assemblages, as <5 mol.% of free H2O was added. The impact of this addition is to more than double the proportion of water‐undersaturated melt to 25–30 mol.%. We have also developed a simple way to estimate how much melt a residual rock has lost, if the compositional trends of the protoliths are known. In summary, we find that even though the addition of small amounts of free H2O impacts significantly on rock fertility, there is little obvious record in the field. The combined application of careful petrological investigation and thermodynamic modelling is the key to identify the influence of aqueous fluids, and exploit systems that became open not only to fluid influx but also to the extraction of melt.  相似文献   
557.
The Sierra Gorda aquifer is one of the most extensive of southern Spain. The main groundwater discharge is produced at its northern boundary through several high‐flow springs. In this study, stable isotopes of dissolved sulfate (δ34S and δ18O) and groundwater chemistry were used to determine the origin of the sulfate and to characterize the groundwater flow. We sampled the main springs, as well as other minor outlets related to perched water tables, in order to determine the different sources of SO42? (e.g., dissolution of evaporites and atmospheric deposition). The substantial difference in the amount of dissolved SO42? between the springs located in its northwestern part (≈25 mg/L) and those elsewhere in the northern part (≈60 mg/L) suggests zones with separate groundwater flow systems. A third group of springs, far from the northeastern boundary of the permeable outcrops, shows higher SO42? content than the rest (≈125 mg/L). The isotopic range of sulfate (?0.3‰ to 14.82‰ V‐CTD) points to several sources, including dissolution of Triassic or Miocene evaporites, atmospheric deposition, and decomposition of organic material in the soil. Among these, the dissolution of Triassic gypsum—which overlies the saturated zone as a consequence of the folds and faults that deform the aquifer—is the main source of SO42? (range from 12.79‰ to 14.82‰ V‐CTD). This range is typical for Triassic gypsum. The higher karstification in the western sector, together with important differences in the saturated thickness between the western and eastern sectors, would also be due to the tectonic structure and could explain the difference in SO42? contents in the water. This singular arrangement may cause a higher residence time of groundwater in the eastern sector; thus, a higher contact time with Triassic evaporitic rocks is inferred. Accordingly, the stable isotopes of SO42? are found to be a valuable tool for identifying areas with different flow systems in the saturated zone of karstic aquifers, as well as for evaluating aspects such as the degree of karstification .  相似文献   
558.
559.
560.
Solar Physics - During solar minimum, the Sun is relatively inactive with few sunspots observed on the solar surface. Consequently, we observe a smaller number of highly energetic events such as...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号