首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   19篇
  国内免费   2篇
测绘学   1篇
大气科学   5篇
地球物理   83篇
地质学   100篇
海洋学   15篇
天文学   27篇
自然地理   9篇
  2023年   1篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   14篇
  2017年   8篇
  2016年   15篇
  2015年   13篇
  2014年   10篇
  2013年   12篇
  2012年   10篇
  2011年   19篇
  2010年   11篇
  2009年   18篇
  2008年   27篇
  2007年   8篇
  2006年   14篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
41.
The lateral continuity of the E?CW trending thrust sheets developed within the Lower to Middle Triassic cover of the central Southern Alps (Orobic belt) is disturbed by the occurrence of several N?CS trending transverse zones, such as the poorly known Grem?CVedra Transverse Zone (GVTZ). The GVTZ developed during the emplacement of the up to six S-verging thrust sheets consisting of Lower to Middle Triassic units, occurring immediately south of the Orobic Anticlines. The transverse zone, active during thrust emplacement related to the early Alpine compressions which pre-date the Adamello intrusion, includes three major vertical shear zones, the Grem, Pezzel and Zuccone faults. The major structure of the transverse zone is the dextral Grem fault, forming a deep lateral ramp between thrust sheets 3 and 5. A similar evolution also occurred along the Zuccone and Pezzel faults, which show a left-lateral displacement of syn-thrust folds. The Grem fault was later reactivated as an oblique tear fault during the emplacement of the Orobic Anticlines, due to back-thrusting along out-of-sequence thrust surfaces (Clusone fault). Transpressional deformations along the fault zone are recorded by the rotation of major syn-thrust folds, which also suggest a horizontal offset close to 0.5?km. Records of the first stage of evolution of the Grem fault are better preserved along its northern segment, and structural relationships suggest that it propagated southward and downward in the growing thrust stack. The study of the meso and megascopic structures developed along the GVTZ constrains the evolution of the transverse zone, illustrating the complex deformational phenomena occurring in a transpressional regime. The GVTZ probably reflects the existence of pre-existing tectonic lineaments with a similar orientation. Evidence of pre-existing structures are not preserved in the exposed units, nevertheless the N?CS extensional fault systems that characterize the Norian to Jurassic rifting history of the Lombardian basin are valid candidates.  相似文献   
42.
Salinity and periodic inundation are both known to have a major role in shaping the ecohydrology of mangroves through their controls on water uptake, photosynthesis, stomatal conductance, gas exchanges, and nutrient availability. Salinity, in particular, can be considered one of the main abiotic regulating factors for halophytes and salt‐tolerant species, due to its influence on water use patterns and growth rate. Ecohydrological literature has rarely focused on the effects of salinity on plant transpiration, based on the fact that the terrestrial plants mostly thrive in low‐saline, unsaturated soils where the role of osmotic potential can be considered negligible. However, the effect of salinity cannot be neglected in the case of tidal species like mangroves, which have to cope with hyperosmotic conditions and waterlogging. We introduce here a first‐order ecohydrological model of the soil/plant‐atmosphere continuum of Avicennia marina—also known as gray mangrove—a highly salt‐tolerant pioneer species able to adapt to hyperarid intertidal zones and characterized by unique morphological and ecophysiological traits. The A. marina's soil‐plant‐atmosphere continuum takes explicitly into account the role of water head, osmotic water potential, and water salinity in governing plant water fluxes. A. marina's transpiration is thus modeled as a function of salinity based on a simple parameterization of salt exclusion mechanisms at the root level and a modified Jarvis' expression accounting for the effects of salinity on stomatal conductance. Consistently with previous studies investigating the physiology of mangroves in response to different environmental drivers, our results highlight the major influence of salinity on mangrove transpiration when contrasted with other potential stressors such as waterlogging and water stress.  相似文献   
43.
Archaeoseismic research contributes important data on past earthquakes. A limitation of the usefulness of archaeoseismology is due to the lack of continuous discussion about the methodology. The methodological issues are particularly important because archaeoseismological investigations of past earthquakes make use of a large variety of methods. Typical in situ investigations include: (1) reconstruction of the local archaeological stratigraphy aimed at defining the correct position and chronology of a destruction layer, presumably related to an earthquake; (2) analysis of the deformations potentially due to seismic shaking or secondary earthquake effects, detectable on walls; (3) analysis of the depositional characteristics of the collapsed material; (4) investigations of the local geology and geomorphology to define possible natural cause(s) of the destruction; (5) investigations of the local factors affecting the ground motion amplifications; and (6) estimation of the dynamic excitation, which affected the site under investigation. Subsequently, a ‘territorial’ approach testing evidence of synchronous destruction in a certain region may delineate the extent of the area struck by the earthquake. The most reliable results of an archaeoseismological investigation are obtained by application of modern geoarchaeological practice (archaeological stratigraphy plus geological–geomorphological data), with the addition of a geophysical-engineering quantitative approach and (if available) historical information. This gives a basic dataset necessary to perform quantitative analyses which, in turn, corroborate the archaeoseismic hypothesis. Since archaeoseismological investigations can reveal the possible natural causes of destruction at a site, they contribute to the wider field of environmental archaeology, that seeks to define the history of the relationship between humans and the environment. Finally, through the improvement of the knowledge on the past seismicity, these studies can contribute to the regional estimation of seismic hazard.  相似文献   
44.
A comprehensive volcanological study of the Albano multiple maar (Alban Hills, Italy) using (i) 40Ar/39Ar geochronology of the most complete stratigraphic section and other proximal and distal outcrops and (ii) petrographic observations, phase analyses of major and trace elements, and Sr and O isotopic analyses of the pyroclastic deposits shows that volcanic activity at Albano was strongly discontinuous, with a first eruptive cycle at 69±1 ka producing at least two eruptions, and a second cycle with two peaks at 39±1 and 36±1 ka producing at least four eruptions. Contrary to previous studies, we did not find evidence of magmatic or hydromagmatic eruptions younger than 36±1 ka. The activity of Albano was fed by a new batch of primary magma compositionally different from that of the older activity of the Alban Hills; moreover, the REE and 87Sr/86Sr data indicate that the Albano magma originated from an enriched metasomatized mantle. According to the modeled liquid line of descent, this magma differentiated under the influence of magma/limestone wall rock interaction. Our detailed eruptive and petrologic reconstruction of the Albano Maar evolution substantiates the dormant state of the Alban Hills Volcanic District. Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: J. Donnelly-Nolan An erratum to this article can be found at  相似文献   
45.
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map.

We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning.

The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical earthquakes and instrumental seismicity, active faults and their seismogenic potential, and seismotectonic evidence from recent earthquakes. This information allowed us to propose new interpretations for poorly understood areas where the new data are in conflict with assumptions made in designing the previous and widely used model ZS4.

ZS9 is made out of 36 zones where earthquakes with Mw > = 5 are expected. It also assumes that earthquakes with Mw up to 5 may occur anywhere outside the seismogenic zones, although the associated probability is rather low. Special care was taken to ensure that each zone sampled a large enough number of earthquakes so that we could compute reliable earthquake production rates.

Although it was drawn following criteria that are standard practice in PSHA, ZS9 is also innovative in that every zone is characterised also by its mean seismogenic depth (the depth of the crustal volume that will presumably release future earthquakes) and predominant focal mechanism (their most likely rupture mechanism). These properties were determined using instrumental data, and only in a limited number of cases we resorted to geologic constraints and expert judgment to cope with lack of data or conflicting indications. These attributes allow ZS9 to be used with more accurate regionalized depth-dependent attenuation relations, and are ultimately expected to increase significantly the reliability of seismic hazard estimates.  相似文献   

46.
The synthesis of experimental understanding of catchment behaviour and its translation into qualitative perceptual models is an important objective of hydrological sciences. We explore this challenge by examining the cumulative understanding of the hydrology of three experimental catchments and how it evolves through the application of different investigation techniques. The case study considers the Huewelerbach, Weierbach and Wollefsbach headwater catchments of the Attert basin in Luxembourg. Subsurface investigations including bore holes and pits, analysis of soil samples and Electrical Resistivity Tomography measurements are presented and discussed. Streamflow and tracer data are used to gain further insights into the streamflow dynamics of the catchments, using end‐member mixing analysis and hydrograph separation based on dissolved silica and electrical conductivity. We show that the streamflow generating processes in all three catchments are controlled primarily by the subsolum and underlying bedrock. In the Huewelerbach, the permeable sandstone formation supports a stable groundwater component with little seasonality, which reaches the stream through a series of sources at the contact zone with the impermeable marls formation. In the Weierbach, the schist formation is relatively impermeable and supports a ‘fill and spill’‐type of flow mechanism; during wet conditions, it produces a delayed response dominated by pre‐event water. In the Wollefsbach, the impermeable marls formation is responsible for a saturation‐excess runoff generating process, producing a fast and highly seasonal response dominated by event water. The distinct streamflow generating processes of the three catchments are represented qualitatively using perceptual models. The perceptual models are in turn translated into quantitative conceptual models, which simulate the hydrological processes using networks of connected reservoirs and transfer functions. More generally, the paper illustrates the evolution of perceptual models based on experimental fieldwork data, the translation of perceptual models into conceptual models and the value of different types of data for processes understanding and model representation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
47.
In the northeastern corner of Sicily (Peloritani Mountains) thin bodies of hercynian crystalline basement, covered by Meso-Cenozoic veneers of sedimentary rocks, represent the highest and innermost Africa-vergent group of thrust units of the Sicilian Belt. The Peloritani tectonic edifice consists of a set of prevalently middle- to high-grade crystalline rocks (so-called Fondachelli Unit, Mandanici Unit and Aspromonte Unit) and thrusts over a thin tectonic wedge made of prevalently Mesozoic to Tertiary sedimentary covers overlying pre-Triassic low-grade metamorphic rocks (Longi-Taormina Unit). The tectonic bodies of the Peloritani thrust system are overlain by thick clastic sequences of late Oligoceneearly Miocene age (the so-called Stilo-Capo d'Orlando Formation). Previous work has pointed out the 'molassic' character of these clastic sequences, which postdate the main deformation phase of the Peloritani belt, started during Oligocene time. New structural data on the crystalline and sedimentary terrains, sedimentological analysis of the outcropping Oligo-Miocene foreland clastic deposits and their geometric relationships with the substrate, make it possible to recognize the syn-tectonic character and the timing of deformation of these basin-fill deposits, which are expressed by prograding clastic fans in the active margin of a foreland-foredeep system. This system has progressively been involved in the accretion of the Sicilian Belt and migration during the early Miocene towards the more external areas represented by the Sicilide sector. Seen in this light, three different lithological units have been distinguished to prdvide a framework for a review of the palaeotectonic significance of the overall Oligo-Miocene terrigenous covers of the Peloritani Thrust belt  相似文献   
48.
Gem-quality alexandrite, hiddenite and kunzite, elbaite and topaz minerals were characterized through a multi-methodological investigation based on EMPA-WDS, LA-ICP-MS, and laser-induced breakdown spectroscopy (LIBS). With respect to the others, the latter technique enables a simultaneous multi-elemental composition without any sample preparation and the detection of light elements, such as Li, Be and B. The criteria for the choice of minerals were: (a) the presence of chromophore elements in minor contents and/or as traces; (b) the presence of light lithophile elements (Li, Be and B); (c) different crystal chemistry complexity. The results show that LIBS can be employed in mineralogical studies for the identification and characterization of minerals, and as a fast screening method to determine the chemical composition, including the chromophore and light lithophile elements.  相似文献   
49.
In lavas spanning ~ 10Ma of subduction-related volcanism in Western Anatolia, we observe remarkably similar patterns of δ7Li and δ11B variation. In this setting, magmatism records a transition from calc–alkaline to ultrapotassic character, consistent with overall lower mean extents of melting, and a changing mantle source that reflects a fractionating, higher temperature slab input consistent with the gradual cessation of subduction. Subsequent rift-related intraplate magmatism record δ7Li signatures within the range observed for MORBs and OIBs, indicating an abrupt transition to a mantle source unmodified by subduction.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号