首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   213篇
  免费   24篇
  国内免费   2篇
测绘学   1篇
大气科学   5篇
地球物理   83篇
地质学   100篇
海洋学   15篇
天文学   26篇
自然地理   9篇
  2023年   1篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   14篇
  2017年   8篇
  2016年   15篇
  2015年   13篇
  2014年   10篇
  2013年   12篇
  2012年   10篇
  2011年   19篇
  2010年   11篇
  2009年   18篇
  2008年   27篇
  2007年   8篇
  2006年   14篇
  2005年   8篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有239条查询结果,搜索用时 22 毫秒
151.
Soon after the Cassini-Huygens spacecraft entered orbit about Saturn on 1 July 2004, its Visual and Infrared Mapping Spectrometer obtained two continuous spectral scans across the rings, covering the wavelength range 0.35-5.1 μm, at a spatial resolution of 15-25 km. The first scan covers the outer C and inner B rings, while the second covers the Cassini Division and the entire A ring. Comparisons of the VIMS radial reflectance profile at 1.08 μm with similar profiles at a wavelength of 0.45 μm assembled from Voyager images show very little change in ring structure over the intervening 24 years, with the exception of a few features already known to be noncircular. A model for single-scattering by a classical, many-particle-thick slab of material with normal optical depths derived from the Voyager photopolarimeter stellar occultation is found to provide an excellent fit to the observed VIMS reflectance profiles for the C ring and Cassini Division, and an acceptable fit for the inner B ring. The A ring deviates significantly from such a model, consistent with previous suggestions that this region may be closer to a monolayer. An additional complication here is the azimuthally-variable average optical depth associated with “self-gravity wakes” in this region and the fact that much of the A ring may be a mixture of almost opaque wakes and relatively transparent interwake zones. Consistently with previous studies, we find that the near-infrared spectra of all main ring regions are dominated by water ice, with a typical regolith grain radius of 5-20 μm, while the steep decrease in visual reflectance shortward of 0.6 μm is suggestive of an organic contaminant, perhaps tholin-like. Although no materials other than H2O ice have been identified with any certainty in the VIMS spectra of the rings, significant radial variations are seen in the strength of the water-ice absorption bands. Across the boundary between the C and B rings, over a radial range of ∼7000 km, the near-IR band depths strengthen considerably. A very similar pattern is seen across the outer half of the Cassini Division and into the inner A ring, accompanied by a steepening of the red slope in the visible spectrum shortward of 0.55 μm. We attribute these trends—as well as smaller-scale variations associated with strong density waves in the A ring—to differing grain sizes in the tholin-contaminated icy regolith that covers the surfaces of the decimeter-to-meter sized ring particles. On the largest scale, the spectral variations seen by VIMS suggest that the rings may be divided into two larger ‘ring complexes,’ with similar internal variations in structure, optical depth, particle size, regolith texture and composition. The inner complex comprises the C and B rings, while the outer comprises the Cassini Division and A ring.  相似文献   
152.
The solution of many practical water problems is strictly connected to the availability of reliable and widespread information about runoff. The estimation of mean annual runoff and its interannual variability for any basin over a wide region, even if ungauged, would be fundamental for both water resources assessment and planning and for water quality analysis. Starting from these premises, the main aim of this work is to show a new approach, based on the Budyko's framework, for mapping the mean annual surface runoff and deriving the probability distribution of the annual runoff in arid and semiarid watersheds. As a case study, the entire island of Sicily, Italy, is here proposed. First, time series data of annual rainfall, runoff, and reconstructed series of potential evapotranspiration have been combined within the Budyko's curve framework to obtain regional rules for rainfall partitioning between evapotranspiration and runoff. Then this knowledge has been used to infer long‐term annual runoff at the point scale by means of interpolated rainfall and potential evapotranspiration. The long‐term annual runoff raster layer has been obtained at each pixel of the drainage network, averaging the upstream runoff using advanced spatial analysis techniques within a GIS environment. Furthermore, 2 alternative methods are here proposed to derive the distribution of annual runoff, under the assumption of negligible interannual variations of basin water storage. The first method uses Monte Carlo simulations, combining rainfall and potential evapotranspiration randomly extracted from independent distributions. The second method is based on a simplification of the Budyko's curve and analytically provides the annual runoff distribution as the derived distribution of annual rainfall and potential evapotranspiration. Results are very encouraging: long‐term annual runoff and its distribution have been derived and compared with historical records at several gauged stations, obtaining satisfactory matching.  相似文献   
153.
154.
The availability of good and reliable rainfall data is fundamental for most hydrological analyses and for the design and management of water resources systems. However, in practice, precipitation records often suffer from missing data values mainly due to malfunctioning of raingauge for specific time periods. This is an important issue in practical hydrology because it affects the continuity of rainfall data and ultimately influences the results of hydrologic studies which use rainfall as input. Many methods to estimate missing rainfall data have been proposed in literature and, among these, most are based on spatial interpolation algorithms.  相似文献   
155.
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.  相似文献   
156.
In the framework of performance-based assessment of existing RC buildings, an important step is the definition of an intensity measure (IM) of the seismic action that be accurate and efficient in correlating with the engineering demand parameters (EDP) of interest and in reducing the variability in their prediction. Objective of this work is to assess five different IMs, when they are applied to an in-plan irregular three-dimensional building subjected to bi-directional earthquake motion. The objective is pursued through multiple regression of the results obtained from nonlinear dynamic analyses. The study shows that certain IMs are more suitable to evaluate EDPs when dealing with 3D structures subjected to 2D earthquakes.  相似文献   
157.
The continental shelf and the upper slope of the Gulf of Palermo (Southern Tyrrhenian Sea) in the depth interval ranging from 50 to 1,500 m were mapped for the first time with Multi Beam echosounder and high resolution seismic. Seven submarine canyons are confined to the upper slope or indent the shelf-edge and enter the Palermo intraslope basin at a depth of around 1,300 m. The canyons evolved through concurrent top-down turbiditic processes and bottom-up retrogressive mass failures. Most of the mass failure features of the area are related to canyon-shaping processes and only few of them are not confined to the upper slope. In general, these features probably do not represent a significant tsunami hazard along the coast. The geological element that controls the evolution of the canyons and induces sediment instability corresponds to the steep slope gradient, especially in the western sector of the Gulf, where the steepest canyons are located. The structural features mapped in the Palermo offshore contributed to the regulation of mass failure processes in the area, with direct faults and antiform structures coinciding with some of the canyon heads. Furthermore, the occurrence of pockmarks and highs that probably consist of authigenic carbonates above faulted and folded strata suggests a local relationship between structural control, fluid escape processes and mass failure. This paper presents a valuable high-resolution morphologic dataset of the Gulf of Palermo, which constitutes a reliable base for evaluating the geo-hazard potential related to slope failure in the area.  相似文献   
158.
A fundamental yet still unresolved puzzle provided by cataclasis is whether particle size reduction mostly progresses through time by the same fragmentation mechanism or not. Available field, laboratory and numerical modelling results on the evolution of cataclastic rocks are still controversial. The evidence that cataclastic rocks exert a primary control on the frictional strength, stability, seismic velocity and permeability properties of fault zones encourages further research on cataclasis. Here, we report data on particle shape from natural cataclastic rocks in poorly layered carbonates in the Apulian foreland of the Southern Apennines of Italy. Particle shape analyses show that particle angularity decreases with increasing size and, for a given size class, it decreases with increasing fractal dimension of the particle size distribution. These results offer support to the temporally and spatially variable nature of rock comminution.  相似文献   
159.
ABSTRACT Laboratory experiments on rock faulting show that processes of particle comminution in fault rocks are influenced by several parameters, including fault strike and normal stress across faults. In nature, normal stress across faults increases with increasing transpressional strike of faults. Accordingly, different structural fabrics and particle size distributions are expected for cataclastic rocks that have developed along faults with different transpressional orientations and comparable displacements within regional-scale strike-slip fault zones. Adjacent bands of cataclastic gouge and breccia were analysed from four small-scale fault zones. All have comparable displacements and very similar protolith (i.e. shallow-water limestone), structure, kinematics, size, and tectonic environment, but different transpressional strikes within the regional-scale left-lateral Mattinata strike-slip fault, Italy. An inverse linear relationship is found between fault transpressional angles and fractal dimensions of particle size distributions from cataclastic rock samples.  相似文献   
160.
We present the concept and the status of a multi-year project based on a new method to measure the Gravitational Red Shift of the Solar Spectrum with high precision. This project is aimed to conduct experimental verifications of the effect that the Einstein theory of General Relativity predicts for the frequencies of the Fraunhofer lines, that is, the light spectrum emitted by the Sun in its strong gravitational field. Previous determinations of such effect is limited to a precision of 2%. In order to discriminate between classical and relativistic explanations, we need to be sensitive to one part per million of the predicted effect. We have developed a new powerful technique, the Magneto-Optical Filter, that is able to provide far better precision and, for the future, possible space instrumentations able to extend our test to the second-order effect of the relativistic equivalence principle, never done before. The present paper is intended to describe the instrumentation, the procedure and the first encouraging results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号