首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   412篇
  免费   24篇
  国内免费   4篇
测绘学   21篇
大气科学   17篇
地球物理   126篇
地质学   126篇
海洋学   41篇
天文学   85篇
综合类   2篇
自然地理   22篇
  2024年   1篇
  2021年   11篇
  2020年   10篇
  2019年   7篇
  2018年   14篇
  2017年   16篇
  2016年   29篇
  2015年   18篇
  2014年   24篇
  2013年   28篇
  2012年   26篇
  2011年   26篇
  2010年   24篇
  2009年   30篇
  2008年   18篇
  2007年   18篇
  2006年   13篇
  2005年   19篇
  2004年   13篇
  2003年   12篇
  2002年   10篇
  2001年   6篇
  2000年   11篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   4篇
  1993年   2篇
  1992年   5篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1986年   1篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1979年   1篇
  1977年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
31.
Converted-wave imaging in anisotropic media: theory and case studies   总被引:1,自引:0,他引:1  
Common‐conversion‐point binning associated with converted‐wave (C‐wave) processing complicates the task of parameter estimation, especially in anisotropic media. To overcome this problem, we derive new expressions for converted‐wave prestack time migration (PSTM) in anisotropic media and illustrate their applications using both 2D and 3D data examples. The converted‐wave kinematic response in inhomogeneous media with vertical transverse isotropy is separated into two parts: the response in horizontally layered vertical transverse isotrophy media and the response from a point‐scatterer. The former controls the stacking process and the latter controls the process of PSTM. The C‐wave traveltime in horizontally layered vertical transverse isotrophy media is determined by four parameters: the C‐wave stacking velocity VC2, the vertical and effective velocity ratios γ0 and γeff, and the C‐wave anisotropic parameter χeff. These four parameters are referred to as the C‐wave stacking velocity model. In contrast, the C‐wave diffraction time from a point‐scatterer is determined by five parameters: γ0, VP2, VS2, ηeff and ζeff, where ηeff and ζeff are, respectively, the P‐ and S‐wave anisotropic parameters, and VP2 and VS2 are the corresponding stacking velocities. VP2, VS2, ηeff and ζeff are referred to as the C‐wave PSTM velocity model. There is a one‐to‐one analytical link between the stacking velocity model and the PSTM velocity model. There is also a simple analytical link between the C‐wave stacking velocities VC2 and the migration velocity VCmig, which is in turn linked to VP2 and VS2. Based on the above, we have developed an interactive processing scheme to build the stacking and PSTM velocity models and to perform 2D and 3D C‐wave anisotropic PSTM. Real data applications show that the PSTM scheme substantially improves the quality of C‐wave imaging compared with the dip‐moveout scheme, and these improvements have been confirmed by drilling.  相似文献   
32.
Summary In this paper statistical tests are exploited in order to verify the hypotheses about the refraction and the deflection of the vertical pertaining to a geometrical model for the three-dimensional adjustment of terrestrial networks. The deflections of the vertical and the refraction coefficients can be assumed either as unknowns or fixed input data, at some or all the points of the network. The geometrical model, reported in the appendix for convenience, assumes as observables the slant distances, zenith and horizontal angles, without any reduction neither to the marks on the ground nor to the surface of reference. Further, the observation equations are derived and linearized in terms of Cartesian coordinates in Geocentric or Topocentric system; direction cosines of the vertical and of the ellipsoidal normal are adopted as the relevant direction parameters. Finally, an application to a network from Hradilek (1984), performed under different assumptions about the unknowns and the corrections of the angular observations due to the deflections of the vertical, shows the effectiveness of the proposed approach.  相似文献   
33.
We present absolute abundances and latitudinal variations of ozone and water in the atmosphere of Mars during its late northern spring (Ls=67.3°) shortly before aphelion. Long-slit maps of the a1Δg state of molecular oxygen (O2) and HDO, an isotopic form of water, were acquired on UT January 21.6 1997 using a high-resolution infrared spectrometer (CSHELL) at the NASA Infrared Telescope Facility. O2(a1Δg) is produced by ozone photolysis, and the ensuing dayglow emission at 1.27 μm is used as a tracer for ozone. Retrieved vertical column densities for ozone above ∼20 km ranged between 1.5 and 2.8 μm-atm at mid- to low latitudes (30°S-60°N) and decreased outside that region. A significant decrease in ozone density is seen near 30°N (close to the subsolar latitude of 23.5°N). The rotational temperatures retrieved from O2(a-X) emissions show a mean of 172±2.5 K, confirming that the sensed ozone lies in the middle atmosphere (∼24 km). The ν1 fundamental band of HDO near 3.67 μm was used as a proxy for H2O. The retrieved vertical column abundance of water varies from 3 precipitable microns (pr-μm) at ∼30°S to 24 pr-μm at ∼60°N. We compare these results with current photochemical models and with measurements obtained by other methods.  相似文献   
34.
The Malaguide-Ghomaride Complex is capped by Upper Oligocene-Aquitanian clastic deposits postdating early Alpine orogenesis but predating the main tectonic-metamorphic evolution, end of nappe emplacement, unroofing, and exhumation of the metamorphic units of the Betic-Rif Orogen. Two conglomerate intervals within these deposits are characterized by clasts of sedimentary, epimetamorphic, and mafic volcanic rocks derived from Malaguide-Ghomaride units and by clasts of acidic magmatic and orthogneissic rocks of unknown provenance, here studied. Magmatic rocks originated from late-Variscan two-mica cordierite-bearing granitoids and, subordinately, from aplitic dikes. Orthogneisses derive from similar plutonic rocks but are affected by an Alpine metamorphic overprint evolving from greenschist (T=510&j0;-530 degrees C and P=5-6 kbar) to low-temperature amphibolite facies (T>550&j0;C and P<3 kbar). Such a plutonic rock suite is unknown in any Betic-Rif unit or in the basement of the Alboran Sea, and the metamorphic evolution in the orthogneisses is different from (and older than) that of Alpujarride-Sebtide rocks to which they were formerly ascribed. Magmatic and metamorphic rocks very similar to those studied characterize the basements of some Kabylia and Calabria-Peloritani units. Therefore, the source area is a currently lost continental-crust realm of Calabria-Peloritani-Kabylia type, located to the ESE of the Malaguide-Ghomaride Domain and affected by a pre-latest Oligocene Alpine metamorphism. Increasingly active tectonics transformed this realm into rising areas from which erosion fed small subsiding synorogenic basins formed on the Malaguide-Ghomaride Complex. This provenance analysis demonstrates that all these domains constituted a single continental-crust block until Aquitanian-Burdigalian times, before its dispersal around nascent western Mediterranean basins.  相似文献   
35.
The analysis of gaseous compositions from Solfatara (Campi Flegrei, South Italy) fumaroles since the early 1980s, clearly reveals a double thermobarometric signature. A first signature at temperatures of about 360 °C was inferred by methane-based chemical-isotopic geoindicators and by the H2/Ar geothermometer. These high temperatures, close to the critical point of water, are representative of a deep zone where magmatic gases flash the hydrothermal liquid, forming a gas plume. A second signature was found to be at around 200-240 °C. At these temperatures, the kinetically fast reactive species (H2 and CO) re-equilibrate in a pure vapor phase during the rise of the plume. A combination of these observations with an original interpretation of the oxygen isotopic composition of the two dominant species, i.e. H2O and CO2, shed light on the origin of fumarolic fluids by showing that effluents are mixture between fluids degassed from a magma body and the vapor generated at about 360 °C by the vaporization of hydrothermal liquids. A typical ‘andesitic’ water type (δD ∼ −20‰, δ18O ∼10‰) and a CO2-rich composition (XCO20.4) has been inferred for the magmatic fluids, while for the hydrothermal component a meteoric origin and a CO2 fugacity fixed by fluid-rock reaction at high temperatures have been estimated. In the time the fraction of magmatic fluids in the fumaroles increased (up to ∼0.5) at each seismic and ground uplift crisis (bradyseism) which occurred at Campi Flegrei, suggesting that bradyseismic crises are triggered by periodic injections of CO2-rich magmatic fluids at the bottom of the hydrothermal system.  相似文献   
36.
37.
The present note is intended as a contribution to the clarification of the collision process, generally assumed to be active between the African and the Eurasian plates in the area of the Messina Straits.For this purpose detailed analyses are made of the surveys carried out in the Straits of Messina in order to investigate the 1908 earthquake. The magnitude and intensity are established; limits are set for the linear dimension of the fault and of the dislocation that gave rise to the earthquake and an estimate is then given of these parameters. The results are then set out of the investigation into the focal mechanism of the earthquake of 1908. The results are also studied of geodetic surveys carried out at the time for the purpose of measuring the variations in height that occurred during the earthquake.A study is also made of the results of geodetic surveys (some of which are still under way) designed to measure the horizontal movements of Sicily with respect to Calabria in order to study locally the continental collision process in the area of the Messina Straits.It is found that the old and recent geodetic measurements as well as the fault-plane solution of the old and recent earthquakes of that area and the slips associated with those earthquakes indicate a motion towards the north of Sicily with respect to Calabria.  相似文献   
38.
The Pantano di San Gregorio Magno is a 4.7 km2 large tectono‐karstic basin located in the axial belt of the Southern Apennines, an area affected by intense seismicity. The basin was formed in the Middle Pleistocene and is presently undissected. It is filled by lacustrine sediments (clays, silts and pyroclastic sands) passing laterally into alluvial fan deposits. Geomorphological investigations were integrated with tephrostratigraphical, palynological and palaeoecological analyses of a 61 m thick core (not reaching the bedrock). The multiproxy analysis of the S. Gregorio Magno record shows that, over the last 200k yr, the basin hosted a freshwater lake with an oscillating level. Age constraints provided by the tephrostratigraphic record allowed estimation of the sedimentation rate, which varied strongly through time. Evolution of the basin resulted from the complex combination of tectonic subsidence, karst processes and changing amounts of sedimentary inputs. The latter was influenced by allogenic contributions related both to primary and reworked volcanoclastic inputs and was climate‐driven. The overall evidence, which indicates that in the long‐term the accumulation rate substantially counterbalanced the accommodation space created by faulting, suggests that the basin evolution was also modulated by changing subsidence rates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
39.
Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.  相似文献   
40.
The flowering characteristics of plant species of economic interest and the influence of climate on them are of great importance considering the implications for fruit setting and the final harvest: Olive is one of the typical species of the Mediterranean habitat. We have investigated the timing of olive full flowering during the anthesis period and flowering intensity over a period of 20 years (1990–2009), in three major cultivation areas of the Mediterranean basin: Italy, Spain and Tunisia. The importance of these characteristics from a bioclimatic point of view is considered. The biological behaviour was studied to determine its main relationships with temperature and water availability, considering also the different sub-periods and the bio-climatic variations during the study period. The flowering dates and pollen emissions show different behaviours for the Spanish monitoring area in comparison with the other two olive cultivation areas. In the Italian and Tunisian areas, the flowering period over the last decade has become earlier by about 5 and 7 days, respectively, in comparison to the previous decade. Moreover, pollen emissions have decreased in Perugia (Italy) and Zarzis (Tunisia) over the period of 2000–2009, while in Cordoba (Spain), they showed their highest values from 2005 to 2009. The climate analysis has shown an increase in temperature, which results in an increase in the growing degree days for the growth of the olive flower structures, particularly in the more northern areas monitored. Although the olive tree is a parsimonious water consumer that is well adapted to xeric conditions, the increase in the potential evapotranspiration index over the last decade in the Italian and Tunisian olive areas might create problems for olive groves without irrigation, with a negative influence on the flowering intensity. Overall, in all of these Mediterranean monitoring areas, the summer water deficit is an increasingly more important parameter in comparison to the winter parameters, which confirms that the winter period is not as limiting as the summer period for olive tree cultivation in these Mediterranean areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号