首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26005篇
  免费   364篇
  国内免费   213篇
测绘学   520篇
大气科学   1939篇
地球物理   5201篇
地质学   9058篇
海洋学   2106篇
天文学   6023篇
综合类   47篇
自然地理   1688篇
  2021年   161篇
  2020年   197篇
  2019年   209篇
  2018年   497篇
  2017年   463篇
  2016年   566篇
  2015年   437篇
  2014年   606篇
  2013年   1211篇
  2012年   731篇
  2011年   1016篇
  2010年   875篇
  2009年   1220篇
  2008年   1056篇
  2007年   1056篇
  2006年   978篇
  2005年   820篇
  2004年   839篇
  2003年   799篇
  2002年   739篇
  2001年   688篇
  2000年   636篇
  1999年   571篇
  1998年   577篇
  1997年   576篇
  1996年   440篇
  1995年   419篇
  1994年   380篇
  1993年   337篇
  1992年   311篇
  1991年   276篇
  1990年   304篇
  1989年   281篇
  1988年   235篇
  1987年   311篇
  1986年   257篇
  1985年   346篇
  1984年   384篇
  1983年   371篇
  1982年   335篇
  1981年   310篇
  1980年   312篇
  1979年   282篇
  1978年   311篇
  1977年   263篇
  1976年   267篇
  1975年   275篇
  1974年   234篇
  1973年   238篇
  1972年   158篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
P. Descamps  F. Marchis 《Icarus》2008,193(1):74-84
We describe in this work a thorough study of the physical and orbital characteristics of extensively observed main-belt and trojan binaries, mainly taken from the LAOSA (Large Adaptive Optics Survey of Asteroids [Marchis, F., Baek, M., Berthier, J., Descamps, P., Hestroffer, D., Kaasalainen, M., Vachier, F., 2006c. In: Workshop on Spacecraft Reconnaissance of Asteroid and Comet Interiors. Abstract #3042]) database, along with a selection of bifurcated objects. Dimensionless quantities, such as the specific angular momentum and the scaled primary spin rate, are computed and discussed for each system. They suggest that these asteroidal systems might be the outcome of rotational fission or mass shedding of a parent body presumably subjected to an external torque. One of the most striking features of separated binaries composed of a large primary (Rp>100 km) with a much smaller secondary (Rs<20 km) is that they all have total angular momentum of ∼0.27. This value is quite close to the Maclaurin-Jacobi bifurcation (0.308) of a spinning fluid body. Alternatively, contact binaries and tidally locked double asteroids, made of components of similar size, have an angular momentum larger than 0.48. They compare successfully with the fission equilibrium sequence of a rotating fluid mass. In conclusion, we find that total angular momentum is a useful proxy to assess the internal structure of such systems.  相似文献   
952.
We have used HST/NICMOS to observe approximately 57% of the martian surface in 7 narrow band filters (0.97, 1.08, 1.13, 1.66, 1.90, 2.12, and 2.15 μm) during the 2003 opposition (Ls∼250°) and at a resolution of ∼12 km/pixel. Principal components analysis (PCA) of the dataset has identified regional variability on scales of hundreds of kilometers associated with differences in the near-infrared spectrum of Mars. Visualization of the data in principal component space has allowed us to identify spectral endmembers associated with the south polar cap, the classic bright terrains, northern Syrtis Major, southern Syrtis Major, Tyrrhena Terra, and Acidalia Planitia. The two Syrtis Major endmembers and the Tyrrhena Terra endmember differ in their absolute reflectivities but have the same spectral shape at wavelengths longer than 1.6 μm. The Acidalia endmember is distinct from the other dark terrain endmembers because it exhibits a strong negative near-IR spectral slope. Comparisons with spectral library measurements cannot provide unique constraints on the surface mineralogy for these sparsely-sampled spectral data. However, the observed spectral variations between Tyrrhena Terra and Syrtis Major are consistent with variations in iron- and sulfur-bearing minerals, and the relatively strong negative spectral slope in the spectrum of Acidalia is consistent with the presence of hydrated alteration products. Additional comparison with previous NICMOS observations taken in 1997 at Ls∼150° indicate that the average near-IR spectral slope of the Acidalia region is more negative during the late northern fall than during the mid northern summer. This may indicate seasonal variations in the presence of either adsorbed water or re-hydrated minerals in the regolith of Acidalia.  相似文献   
953.
The surface of Enceladus consists almost completely of water ice. As the band depths of water ice absorptions are sensitive to the size of particles, absorptions can be used to map variations of icy particles across the surface. The Visual and Infrared Mapping Spectrometer (VIMS) observed Enceladus with a high spatial resolution during three Cassini flybys in 2005 (orbits EN 003, EN 004 and EN 011). Based on these data we measured the band depths of water ice absorptions at 1.04, 1.25, 1.5, and 2 μm. These band depths were compared to water ice models that represent theoretically calculated reflectance spectra for a range of particle diameters between 2 μm and 1 mm. The agreement between the experimental (VIMS) and model values supports the assumption that pure water ice characterizes the surface of Enceladus and therefore that variations in band depth correspond to variations in water ice particle diameters. Our measurements show that the particle diameter of water ice increases toward younger tectonically altered surface units with the largest particles exposed in relatively “fresh” surface material. The smallest particles were generally found in old densely cratered terrains. The largest particles (∼0.2 mm) are concentrated in the so called “tiger stripes” at the south pole. In general, the particle diameters are strongly correlated with geologic features and surface ages, indicating a stratigraphic evolution of the surface that is caused by cryovolcanic resurfacing and impact gardening.  相似文献   
954.
The Mars Reconnaissance Orbiter observes Mars from a nearly circular, polar orbit. From this vantage point, the Mars Color Imager extends the ∼5 Mars years record of Mars Global Surveyor global, visible-wavelength multi-color observations of meteorological events and adds measurements at three additional visible and two ultraviolet wavelengths. Observations of the global distribution of ozone (which anti-correlates with water vapor) and water ice and dust clouds allow tracking of atmospheric circulation. Regional and local observations emphasize smaller scale atmospheric dynamics, especially those related to dust lifting and subsequent motion. Polar observations detail variations related to the polar heat budget, including changes in polar frosts and ices, and storms generated at high thermal contrast boundaries.  相似文献   
955.
C.M. Anderson  E.F. Young  C.P. McKay 《Icarus》2008,194(2):721-745
We report on the analysis of high spatial resolution visible to near-infrared spectral images of Titan at Ls=240° in November 2000, obtained with the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope as part of program GO-8580. We employ a radiative transfer fractal particle aerosol model with a Bayesian parameter estimation routine that computes Titan's absolute reflectivity per pixel for 122 wavelengths by modeling the vertical distribution of the lower atmosphere haze and tropospheric methane. Analysis of these data suggests that Titan's haze concentration in the lower atmosphere varies in strength with latitude. We find Titan's tropospheric methane profile to be fairly consistent with latitude and longitude, and we find evidence for local areas of a CH4-N2 binary saturation in Titan's troposphere. Our results suggest that a methane and haze profile at one location on Titan would not be representative of global conditions.  相似文献   
956.
We present high signal precision optical reflectance spectra of 2005 FY9 taken with the Red Channel Spectrograph and the 6.5-m MMT telescope on 2006 March 4 UT (5000-9500 Å; 6.33 Å pixel−1) and 2007 February 12 UT (6600-8500 Å; 1.93 Å pixel−1). From cross-correlation experiments between the 2006 March 4 spectrum and a pure CH4-ice Hapke model, we find the CH4-ice bands in the MMT spectrum are blueshifted by 3 ± 4 Å relative to bands in the pure CH4-ice Hapke spectrum. The higher resolution MMT spectrum of 2007 February 12 UT enabled us to measure shifts of individual CH4-ice bands. We find the 7296, 7862, and 7993 Å CH4-ice bands are blueshifted by 4 ± 2, 4 ± 4, and 6 ± 5 Å. From four measurements we report here and one of our previously published measurements, we find the CH4-ice bands are shifted by 4 ± 1 Å. This small shift is important because it suggest the presence of another ice component on the surface of 2005 FY9. Laboratory experiments show that CH4-ice bands in spectra of CH4 mixed with other ices are blueshifted relative to bands in spectra of pure CH4-ice. A likely candidate for the other component is N2-ice because its weak 2.15 μm band and blueshifted CH4 bands are seen in spectra of Triton and Pluto. Assuming the shift is due to the presence of N2, spectra taken on two consecutive nights show no difference in CH4/N2. In addition, we find no measurable difference in CH4/N2 at different depths into the surface of 2005 FY9.  相似文献   
957.
New maps of martian water vapor and hydrogen peroxide have been obtained in November-December 2005, using the Texas Echelon Cross Echelle Spectrograph (TEXES) at the NASA Infra Red Telescope facility (IRTF) at Mauna Kea Observatory. The solar longitude Ls was 332° (end of southern summer). Data have been obtained at 1235-1243 cm−1, with a spectral resolution of 0.016 cm−1 (R=8×104). The mean water vapor mixing ratio in the region [0°-55° S; 345°-45° W], at the evening limb, is 150±50 ppm (corresponding to a column density of 8.3±2.8 pr-μm). The mean water vapor abundance derived from our measurements is in global overall agreement with the TES and Mars Express results, as well as the GCM models, however its spatial distribution looks different from the GCM predictions, with evidence for an enhancement at low latitudes toward the evening side. The inferred mean H2O2 abundance is 15±10 ppb, which is significantly lower than the June 2003 result [Encrenaz, T., Bézard, B., Greathouse, T.K., Richter, M.J., Lacy, J.H., Atreya, S.K., Wong, A.S., Lebonnois, S., Lefèvre, F., Forget, F., 2004. Icarus 170, 424-429] and lower than expected from the photochemical models, taking in account the change in season. Its spatial distribution shows some similarities with the map predicted by the GCM but the discrepancy in the H2O2 abundance remains to be understood and modeled.  相似文献   
958.
The spin rate distribution of main belt/Mars crossing (MB/MC) asteroids with diameters 3-15 km is uniform in the range from f=1 to 9.5 d−1, and there is an excess of slow rotators with f<1 d−1. The observed distribution appears to be controlled by the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The magnitude of the excess of slow rotators is related to the residence time of slowed down asteroids in the excess and the rate of spin rate change outside the excess. We estimated a median YORP spin rate change of ≈0.022 d−1/Myr for asteroids in our sample (i.e., a median time in which the spin rate changes by 1 d−1 is ≈45 Myr), thus the residence time of slowed down asteroids in the excess is ≈110 Myr. The spin rate distribution of near-Earth asteroids (NEAs) with sizes in the range 0.2-3 km (∼5 times smaller in median diameter than the MB/MC asteroids sample) shows a similar excess of slow rotators, but there is also a concentration of NEAs at fast spin rates with f=9-10 d−1. The concentration at fast spin rates is correlated with a narrower distribution of spin rates of primaries of binary systems among NEAs; the difference may be due to the apparently more evolved population of binaries among MB/MC asteroids.  相似文献   
959.
The condensing CO2 south polar cap of Mars and the mechanisms of the CO2 ice accumulation have been studied through the analysis of spectra acquired by the Planetary Fourier Spectrometer (PFS) during the first two years of ESA's Mars Express (MEX) mission. This dataset spans more than half a martian year, from Ls∼330° to Ls∼194°, and includes the southern fall season which is found to be extremely important for the study of the residual south polar cap asymmetry. The cap expands symmetrically and with constant speed during the fall season. The maximum extension occurs sometime in the 80°-90° Ls range, when the cap edges are as low as −40° latitude. Inside Hellas and Argyre basins, frost can be stable at lower latitudes due to the higher pressure values, causing the seasonal cap to be asymmetric. Within the seasonal range considered in this paper, the cap edge recession rate is approximately half the rate at which the cap edge expanded. The longitudinal asymmetries reduce during the cap retreat, and disappear around Ls∼145°. Two different mechanisms are responsible for CO2 ice accumulation during the fall season, especially in the 50°-70° Ls range. Here, CO2 condensation in the atmosphere, and thus precipitation, is allowed exclusively in the western hemisphere, and particularly in the longitudinal corridor of the perennial cap. In the eastern hemisphere, the cap consists mainly of CO2 frost deposits, as a consequence of direct vapor deposition. The differences in the nature of the surface ice deposits are the main cause for the residual south polar cap asymmetry. Results from selected PFS orbits have also been compared with the results provided by the martian general circulation model (GCM) of the Laboratoire de Météorologie dynamique (LMD) in Paris, with the aim of putting the observations in the context of the global circulation. This first attempt of cross-validation between PFS measurements and the LMD GCM on the one hand confirms the interpretation of the observations, and on the other hand shows that the climate modeling during the southern polar night on Mars is extremely sensitive to the dynamical forcing.  相似文献   
960.
This paper investigates the exchange of global mean angular momentum between an atmosphere and its underlying planet by a simple model. The model parameterizes four processes that are responsible for zonal mean momentum budget in the atmospheric boundary layer for a rotating planet: (i) meridional circulation that redistributes the relative angular momentum, (ii) horizontal diffusion that smoothes the prograde and retrograde winds, (iii) frictional drag that exchanges atmospheric angular momentum with the underlying planet, and (iv) internal redistribution of the zonal mean momentum by wave drag. It is shown that under a steady-state or a long-term average condition, the global relative angular momentum in the boundary layer vanishes unless there exists a preferred frictional drag for either the prograde or the retrograde zonal wind. We further show quantitatively that one cannot have either a predominant steady prograde or retrograde wind in the boundary layer of a planetary atmosphere. The parameter dependencies of the global relative angular momentum and the strength of the atmospheric circulation in the boundary layer are derived explicitly and used to explain the observational differences between the atmospheres of Earth and Venus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号