首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   352篇
  免费   6篇
  国内免费   4篇
测绘学   2篇
大气科学   68篇
地球物理   51篇
地质学   105篇
海洋学   18篇
天文学   66篇
综合类   4篇
自然地理   48篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2018年   8篇
  2017年   8篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   12篇
  2012年   6篇
  2011年   15篇
  2010年   7篇
  2009年   13篇
  2008年   7篇
  2007年   12篇
  2006年   12篇
  2005年   10篇
  2004年   17篇
  2003年   10篇
  2002年   7篇
  2001年   12篇
  2000年   10篇
  1999年   9篇
  1998年   6篇
  1997年   8篇
  1996年   10篇
  1995年   9篇
  1994年   15篇
  1993年   5篇
  1992年   5篇
  1991年   9篇
  1990年   8篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   9篇
  1983年   7篇
  1982年   3篇
  1981年   4篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
  1972年   2篇
  1971年   9篇
排序方式: 共有362条查询结果,搜索用时 31 毫秒
81.
Satellite-Based Augmentation Systems (SBASs) enhance the global navigation satellite system (GNSS) to support all phases of flight by providing required accuracy, integrity, continuity, and availability. The Korean SBAS program was recently initiated to develop a single-frequency SBAS aiming to provide Approach Procedure with Vertical guidance (APV)-I Safety-of-Life (SoL) service to aviation users by 2022 within the Korean region. We assess the preliminary availability of the single-frequency SBAS which will be deployed in the Korean peninsula. The resulting system performance shall be used as a baseline to design system components and specifications. The fundamental components of SBAS architecture, SBAS monitor network, geostationary earth orbiting satellite parameters, and ionospheric grid point mask, are defined and their effects on system performance are investigated. Ionospheric correction and integrity algorithm parameters including an ionospheric irregularity threat model are determined using data collected from the Korean GNSS network. The coverage of 99.9 % availability for APV-I service increases from approximately 70 % for the baseline case to 100 % when SBAS monitor stations are expanded to overseas. Even with the expanded monitor network, however, 90 % and less than 95 % availability for LPV-200 service can be achieved only in a very limited region.  相似文献   
82.
We have used 3-mm Saturn observations, obtained from 1965 through 1977 and with Jupiter as a reference, to derive a ring brightness temperature of 18 ± 8°K. Thebrightness temperature of the disk of Saturn is 156 ± 9° K. Part of the ring brightness (≈62K) may be accounted for as disk emission which is scattered from the rings; the remainder (12 ± 8° K we attributed to ring particle thermal emission. Because this thermal component brightness temperatures is so much less than the particle physical temperature, limits are placed on the mean size and composition of the ring particles. In particular, as found by others, the particles cannot be rocky, but must be either metallic or composed of extremely low-loss dielectric material such as water ice. If the particles are pure water ice, for example, then a simple slab model and a multiple-scattering model both give upper limits to the particle sizes of ≈ 1 m, a value three times smaller than previously available. The multiple-scattering model gives a particle single-scattering albedo at 3 mm of 0.83±0.13.  相似文献   
83.
Transmission and analytical electron microscopy (TEM/AEM) of glaucophane from glaucophane + Ca-amphibole-bearing blueschist and eclogite from two Vermont localities (Ecologite Brook and Tillotson Peak) and one California locality (Cazadero) has revealed the first evidence from exsolution for the miscibility gap between sodie and calcic amphiboles. The Tillotson Peak samples and the Cazadero samples contain coarsegrained glaucophane—actinolite pairs, while the Eclogite Brook samples contain coexisting glaucophane and actinolitic hornblende. Ca-rich glaucophanes contain abundant fine-scale lamellae of Ca-rich amphibole. These lamellae are usually oriented near (100) and . High-resolution TEM (HRTEM) images show them to be coherent. The exsolution lamellae are so narrow, beyond the resolution of AEM, that their true Ca contents are obscured by analytical contributions from the surrounding host. The AEM data suggest that the lamellae are either winchite or actinolite, depending on the true Ca concentration. In most cases, the exsolution lamellae have very curved interfaces and show variable orientation. This is attributed to the close similarity of unit-cell parameters for the two amphiboles. Three-dimensional optimal phase-boundary calculations using EPLAG (Fleet 1982) show that the observed 100 and orientations are consistent with the minimization of area strain between the two lattices along the interface. Some samples show evidence for incipient exsolution in the form of homogeneously distributed, fine-scale precipitates. These results suggest that Ca-rich glaucophanes from other glaucophane—actinolite assemblages may be exsolved at the TEM scale. The coexisting amphiboles from Eclogite Brook also have been studied using the electron microprobe (EMP). The compositional gap defined by the Eclogite Brook pairs is consistent with previously reported results, but shows a wider break along the glaucophane—actinolite pseudobinary join, suggesting very limited solid solution up to temper-atures of about 500–550°C. The glaucophanes are relatively poor in Ca, except for one anomalous grain containing Ca-amphibole lamellae. Ferric iron, estimated by normalization to fixed cation numbers, is strongly partitioned into the actinolitic hornblende and the glaucophanes are very poor in the riebeckite component.  相似文献   
84.
A three-dimensional finite-element mesoscale model is used to study the interaction of two different but related mesoscale phenomena in an area having a complex pattern of surface heating. The model simulations have been compared with temperature and wind fields observed on a typical fall day during the Kennedy Space Center Atmospheric Boundary Layer Experiment on the east coast of Florida.Numerical results and observations both show that the meso- scale flow field is significantly modified from the conventional coastal-flow patterns by the smaller meso- scale irregular geographic features in this area. A local river breeze is observed to develop around the Indian River almost the same time as the Atlantic sea breeze. A comparison of the sea and the river breezes shows a large difference in their horizontal circulations but only slight differences in their vertical scales. The sea breeze intensifies more rapidly than the river breeze, so that a lag of 1 to 1.5 h exists between their most developed stages. The river breeze is relatively stationary, whereas the sea breeze propagates inland, with an eventual merger of the two circulations occurring about 6–8 h after their onset.Different synoptic wind regimes create different flow structures. Well-defined sea- and river-breeze circulations become established under calm, weak offshore, and weak alongshore synoptic-wind conditions. Maximum vertical velocities occur in the sea-breeze front (river-breeze front) in the cases of calm (offshore winds). The sea breeze and the river breeze are weaker when the synoptic winds are stronger.Finally, the results from numerical experiments designed to isolate the rivers' effect indicate that the convergence in the sea-breeze front is suppressed when it passes over the cooler surface of the rivers.Journal Paper No. J-14150 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa, Project No. 2779  相似文献   
85.
Stephanodiscus niagarae populations in a core from Lake Ontario show systematic variation in radial puncta number and mean valve diameter. Puncta number is stable in specimens from samples deposited between 1720 and 1844. Puncta number gradually increases in samples deposited between 1860 and 1947, then increases rapidly to high numbers in samples deposited after 1964. Mean valve diameter is relatively high in specimens from samples deposited between 1720 and 1959. Diameter of specimens deposited during this period fluctuates around a mean of 63.2 m. Mean diameter of specimens deposited from 1959 to 1980 is only 42.5 m. We conclude that the trend in puncta number reflects the time course of eutrophication in Lake Ontario. We interpret the precipitous decline in mean diameter as an indication that conditions in the lake after the late 1950's did not permit sexual reproduction in this species.  相似文献   
86.
We examine the shape of a “rubble pile” asteroid as it slowly gains angular momentum by YORP torque, to the point where “landsliding” occurs. We find that it evolves to a “top” shape with constant angle of repose from the equator up to mid-latitude, closely resembling the shapes of several nearly critically spinning asteroids imaged by radar, most notably (66391) 1999 KW4 [Ostro, S.J., Margot, J.-L., Benner, L.A.M., Giorgini, J.D., Scheeres, D.J., Fahnestock, E.G., Broschart, S.B., Bellerose, J., Nolan, M.C., Magri, C., Pravec, P., Scheirich, P., Rose, R., Jurgens, R.F., De Jong, E.M., Suzuki, S., 2006. Science 314, 1276-1280]. Similar calculations for non-spinning extremely prolate or oblate “rubble piles” show that even loose rubble can sustain shapes far from fluid equilibrium, thus inferences based on fluid equilibrium are generally useless for inferring bulk properties such as density of small bodies. We also investigate the tidal effects of a binary system with a “top shape” primary spinning at near the critical limit for stability. We find that very close to the stability limit, the tide from the secondary can actually levitate loose debris from the surface and re-deposit it, in a process we call “tidal saltation.” In the process, angular momentum is transferred from the primary spin to the satellite orbit, thus maintaining the equilibrium of near-critical spin as YORP continues to add angular momentum to the system. We note that this process is in fact dynamically related to the process of “shepherding” of narrow rings by neighboring satellites.  相似文献   
87.
We present a summary of late Paleoproterozoic to Neoproterozoic mafic magmatism in the Siberian craton, including recently published U–Pb and 40Ar–39Ar dates. These new precise ages suggest that at least some of the previously published K–Ar ages of Siberian mafic bodies should be ignored. The time–space geochronological chart, or the ‘barcode’ of mafic magmatic events shows significant differences between northern and southern Siberia. Both are characterized by ∼1900–1700 Ma magmatic events, but then there was an almost 1 Ga mafic magmatic ‘pause’ in south Siberia until ∼800 Ma. Meanwhile there are indications of multiple mafic magmatic events in North Siberia (Anabar shield and Olenek uplift) between ∼1600 and 1000 Ma. A series of magmatic events probably related to the breakup of Rodinia occurred in southern Siberia after ∼800 Ma. So far, there are no indications of late Neoproterozoic mafic magmatism in North Siberia. Ca. 1000–950 Ma mafic sills were reported from Meso- to Neo-Proterozoic sedimentary successions in the Sette-Daban area on the east side of the Siberian craton, but their tectonic setting is debated. Recent Ar–Ar dates of ∼1750 Ma for NW-trending dykes in the Aldan and Anabar shields, together with similar-age NNE-trending Baikal uplift dykes in south-eastern Siberia suggest the existence of a giant radial dyke swarm possibly related to a mantle plume centred in the Vilyui River area.  相似文献   
88.
This paper describes a study of the vertical structure of concentration fluctuations in a neutrally buoyant plume from an elevated point source in slightly convective to moderately stable meteorological conditions at ranges of between 12.5 and 100 m for a range of source heights between 1 and 5 m. Observations were made of concentration fluctuations in a dispersing plume using a vertical array of sixteen very fast-response photoionization detectors placed at heights between 0.5 and 16 m. Vertical profiles of a number of concentration statistics were extracted, namely, mean concentration, fluctuation intensity, intermittency factor, peak-to-mean concentration ratio, mean dissipation rate of concentration variance, and various concentration time and length scales of dominant motions in the plume (e.g., integral macro-scale, in-plume mid-scale and Taylor micro-scale). The profiles revealed a similarity to corresponding crosswind profiles for a fully elevated plume, but showed greater and greater departure from the latter shapes once the plume had grown in the vertical so that its lower dege began to interact progressively more strongly with the ground. The evolution of the concentration probability density function at a fixed range, but with decreasing height from the ground, is similar to that obtained at a fixed height but with increasing distance from the source. Concentration power spectra obtained at different heights all had an extensive inertial-convective subrange spanning at least two decades in frequency, but spectra measured near the ground had a greater proportion of the total concentration variance in the lower frequencies (energetic subrange), with a correspondingly smaller proportion in the higher frequencies (inertial-convective subrange). It is believed that these effects result from the increased mean shear near the surface, and blocking by the surface. The effect of enhanced shear-induced molecular diffusion on concentration fluctuations is examined.  相似文献   
89.
90.
Radiochemical neutron activation analysis of Ag, As, Au, Bi, Co, Cs, Ga, In, Rb, Sb, Te, Tl and Zn and major element data in 14 L4-6 and 3 LL5 chondrites indicates that the L-group is unusually variable and may represent at least 2 sub-groups differing in formation history. Chemical trends in the S/Fe-rich sub-group support textural evidence indicating late loss of a shock-formed Fe-Ni-S melt; the S/Fe-poor sub-group seemingly reflects nebular fractionation only. Highly mobile In and Zn apparently reflect shock-induced loss from L-chondrites. Data for L5 chondrites suggest higher formation temperatures and/or degrees of shock than for LL5 chondrites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号