首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
测绘学   1篇
地球物理   9篇
地质学   14篇
海洋学   7篇
天文学   16篇
自然地理   2篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
  2011年   3篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   2篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   1篇
  1998年   1篇
  1988年   1篇
排序方式: 共有49条查询结果,搜索用时 500 毫秒
11.
The objective of this study is to document and interpret a recently discovered carbonate-cemented coastal barrier on the inner shelf of the Gulf of Valencia (western Mediterranean Sea). The coastal barrier was identified in a high-resolution digital bathymetric model based on a cartographic survey of the study area using a multibeam echosounder. Moreover, radiocarbon dating and petrographic analyses were performed on a rock sample recovered from the seabed. The data reveal the submerged coastal barrier to be approx. 1.7 km wide and 70 km long, and incised by channels of various dimensions. Aligned more or less parallel to the modern coastline, it is interpreted as corresponding to the shoreline of a former sea-level stillstand. The barrier and lagoon system became stranded above sea level in the course of a subsequent forced regression, which also caused the incision of the river courses. Age dating of the cemented rock suggests that the fossil coastal barrier most probably formed during the prolonged Tyrrhenian (Eemian) sea-level highstand, induration taking place by carbonate cementation at the contact between freshwater and seawater (beach-rock formation). The fact that the fossil barrier is today submerged below modern sea level is explained by the sustained subsidence affecting the region.  相似文献   
12.
The combined use of geophysical and soil gas composition exploration methods allows to rapidly obtain at relative low cost information that might be related to seismic activity conditions. In this study, we carried out geochemical soil gas sampling (222Rn, 220Rn and CO2), electrical resistivity tomography and seismic refraction profiles in two selected zones near the town of Amer in the Spanish Pyrenees, where the presence of recent fractures is evident in the field. Data analysis clearly reveals anomalous values for each gas at specific positions along the electrical imaging transects. Geomorphologic and hydrogeologic data and the integration of geophysical data and soil gas measurements indicate that: (1) endogene gases radon (222Rn) and carbon dioxide (CO2) are released from the meta-sedimentary basement rocks across the main fractured zones with higher permeability values, while lower Cenozoic detrital sedimentary formations act as an impervious boundary; (2) sites with highest radon concentrations (52?kBq?m?3) coincide with the zones in the Amer fault showing more recent geomorphic evidence of activity, and more specifically with those areas covered by thinner surficial formations; (3) the lowest 222Rn values (0.2?C0.4?kBq?m?3) were recorded just on the master active fault plane. This pattern could be explained by a dilution effect resulting from high rates of soil CO2 efflux (267?g?m?2?day?1); (4) soil thoron (220Rn) activity is maximum (143?kBq?m?3) in areas with high surficial fracturing; (5) groundwater pumping may cause important distortions in the natural flow dynamics and in the measured concentrations of gases. The agreement between the different data (geochemical, geophysical, and hydrogeological) and field observations (geology and geomorphology) leads us to propose a preliminary tectonic-gravitational model for the study area.  相似文献   
13.
A historical data set is used to describe the coastal transition zone off Northwest Africa during spring 1973 and fall 1975, from 17° to 26°N, with special emphasis on the interaction between subtropical (North Atlantic Central Waters) and tropical (South Atlantic Central Waters) gyres. The near-surface geostrophic circulation, relative to 300 m, is quite complex. Major features are a large cyclonic pattern north of Cape Blanc (21°N) and offshore flow at the Cape Verde front. The large cyclone occurs in the region of most intense winds, and resembles a large meander of the baroclinic southward upwelling jet. The Cape Verde frontal system displays substantial interleaving that may partly originate as mesoscale features at the coastal upwelling front. Property–property diagrams show that the front is an effective barrier to all properties except temperature. The analysis of the Turner angle suggests that the frontal system is characterized by large heat horizontal diffusion as a result of intense double diffusion, which results in the smoothing of the temperature horizontal gradients. Nine cross-shore sections are used to calculate along-shore geostrophic water-mass and nutrient transports and to infer exchanges between the coastal transition zone and the deep ocean (import: deep ocean to transition zone; export: transition zone to deep ocean). These exchanges compare well with mean wind-induced transports and actual geostrophic cross-shore transport estimates. The region is divided into three areas: southern (18–21°N), central (21–23.5°N), and northern (23.5–26°N). In the northern area geostrophic import is roughly compensated with wind-induced export during both seasons. In the central area geostrophic import is greater than wind-induced export during spring, resulting in net import of both water (0.8 Sv) and nitrate (14 kmol s−1), but during fall both factors again roughly cancel. In the southern area geostrophy and wind join to export water and nutrients during both seasons, they increase from 0.6 Sv and 3 kmol s−1 during fall to 2.9 Sv and 53 kmol s−1 during spring.  相似文献   
14.
We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.  相似文献   
15.
16.
The Basque coastal area, in the southeastern Bay of Biscay, can be characterised as being more influenced by land climate and inputs, than other typically ‘open sea’ areas. The influence of coastal processes, together with the presence of irregular and steep topography, complicate greatly the water circulation patterns. Water movement along the Basque coastal area is not well understood; observations are scarce and long-term current records are lacking. The knowledge available is confined to the surface currents: the surface water circulation is controlled mainly by wind forcing, with tidal and density currents being weak. However, there is a lack of knowledge available on currents within the lower levels of the water column; likewise, on the main time-scales involved in the water circulation. This study quantifies the contribution of the tidal and wind-induced currents, to the overall water circulation; it identifies the main time-scales involved within the tidal and wind-induced flows, investigating difference in such currents, throughout the water column, within Pasaia Bay (Basque coast). Within this context, extensive oceanographic and meteorological data have been obtained, in order to describe the circulation. The present investigation reveals that the circulation, within the surface and the sub-surface waters, is controlled mainly by wind forcing fluctuations, over a wide range of meteorological frequencies: third-diurnal, semidiurnal and diurnal land–sea breezes; synoptic variability; frequencies, near fortnightly periods; and seasonal. At the lower levels of the water column, the main contribution to the water circulation arises from residual currents, followed by wind-induced currents on synoptic time-scales. In contrast, tidal currents contribute minimally to the overall circulation throughout the water column.  相似文献   
17.
Linear and non-linear empirical models for salinity (S) are estimated from the Argo temperature (T) and salinity (delayed) data. This study focuses on the reconstruction of salinity in the upper 1200 m of the eastern North Atlantic Ocean, a region characterized by the presence of many different water masses. While previous studies have found it necessary to split this region by boxes to fit different polynomial models in each box, a unique model valid for the entire region is fitted here. Argo profiles are randomly distributed on two sets: one for fitting the models and one for testing them. Non-linear regressions are built using neural networks with a single hidden layer and the fitting data set is further divided into two subsets: one for adjusting the coefficients (training data) and one for early stopping of the fitting (validation data). Our results indicate that linear regressions perform better than the climatologic TS relationship, but that non-linear regressions perform better than the linear ones. Non-linear training using a three-data subsets strategy successfully prevents overfitting even when networks with 90 neurons in the hidden layer are being trained. While the presence of local minima may complicate the generalization of non-linear models to new data, network committees (created by training the same network from different random initial weights) are shown to better reproduce the test data. Several predictors are tested, and the results show that geographical, or surface, information does provide significant information. These results highlight the potential applications of future satellite missions measuring sea-surface salinity to reconstruct, when combined with temperature profiles, vertical salinity profiles.  相似文献   
18.
19.
Odors occupy a leading position among air quality issues of growing concern. Odors can be emitted from different economic sectors, from industrial to agricultural, including waste treatment activities. Although there are different techniques to determine odor emissions, a standardized indicator has not still been defined to include odor impact into methodological tools such as Life Cycle Assessment. In this sense, some proposals can be found in current literature. Considering these approaches, the present work proposes the Odor Impact Potential, an indicator to be used in Life Cycle Assessment or in waste treatment technologies benchmarking. A simple method is reported to calculate the Odor Impact Potential value from different types of data: chemical analysis of odorants or olfactometric determinations. Data obtained in a previous work for an industrial scale anaerobic digestion plant have been used to present an example of application. Additional Odor Impact Potential calculations from other published data (thermal waste treatment plant and wastewater treatment plant) are also included. The aim of Odor Impact Potential is not to replace parameters such as odor emission rates, odor concentration, or odor emission factors but to use those values to calculate the odor-derived impact in Life Cycle Assessment studies.  相似文献   
20.
Numerous studies have shown that most beaches and coastal dune systems of the world are currently eroding but very few have investigated the combined sediment budgets of subaerial and nearshore submarine systems. In the case of the dune field of the Maspalomas Natural Special Reserve (in the south of Gran Canaria), the adjacent Maspalomas and El Inglés beaches and the adjacent submarine platform, the sediment budgets have been severely affected by erosion over the past few decades. The objectives of this study were to investigate the availability of sand within the modern sedimentary system, including the coastal dunes, the beaches and the submerged shelf, but also to assess local sediment sinks. An isopach map generated on the basis of topo-bathymetric data and seismic-reflection profiles revealed that sediment thickness varies from 0–22 m in the study area. Expanses of relatively low sediment thickness were identified in the south-western sector of the coastal dune field along Maspalomas beach, and in the nearshore region to the south of this beach. These localized sediment-deficit areas earmark Maspalomas beach as the most vulnerable shore strip threatened by erosion. The shallow seismic data also revealed that the submarine platform south of Maspalomas represents a marine terrace cut into an ancient alluvial fan, thus documenting an influence of the geomorphological heritage on the present-day morphodynamics. A side-scan sonar mosaic of this nearshore platform enabled the delimitation of areas covered by rock, boulders and gravel, vegetated sand patches and a mobile sand facies, the latter including ripple and megaripple fields. The megaripple field in a valley close to the talus of the marine terrace has been identified as a major sediment sink of the Maspalomas sedimentary system. It is fed by south-westerly storm-wave events. The sediment deficit in the coastal dune field and along Maspalomas beach can therefore only be explained by a currently faster loss of sediment to an offshore sink than can be compensated by the supply of sand from outside the system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号