首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   324篇
  免费   8篇
  国内免费   3篇
测绘学   4篇
大气科学   20篇
地球物理   60篇
地质学   173篇
海洋学   8篇
天文学   55篇
自然地理   15篇
  2020年   3篇
  2018年   6篇
  2017年   7篇
  2015年   5篇
  2014年   5篇
  2013年   16篇
  2012年   7篇
  2011年   13篇
  2010年   26篇
  2009年   9篇
  2008年   14篇
  2007年   16篇
  2006年   13篇
  2005年   10篇
  2004年   7篇
  2003年   7篇
  2002年   8篇
  2001年   6篇
  2000年   9篇
  1999年   3篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   8篇
  1994年   8篇
  1993年   7篇
  1992年   5篇
  1990年   3篇
  1989年   3篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1982年   3篇
  1979年   8篇
  1978年   7篇
  1977年   2篇
  1973年   3篇
  1971年   2篇
  1970年   4篇
  1969年   2篇
  1966年   2篇
  1965年   2篇
  1962年   4篇
  1960年   2篇
  1955年   2篇
  1954年   2篇
  1953年   2篇
  1948年   5篇
  1931年   2篇
  1921年   2篇
排序方式: 共有335条查询结果,搜索用时 375 毫秒
41.
Acta Geochimica - Production of voluminous igneous arc rocks, high-pressure/low-temperature (HP/LT) metamafic rocks, westward relative migration of the Klamath Mountains province, and U–Pb...  相似文献   
42.
From direct N‐body simulations we find that the dynamical evolution of star clusters is strongly influenced by the Roche volume filling factor. We present a parameter study of the dissolution of open star clusters with different Roche volume filling factors and different particle numbers. We study both Roche volume underfilling and overfilling models and compare with the Roche volume filling case. We find that in the Roche volume overfilling limit of our simulations two‐body relaxation is no longer the dominant dissolution mechanism but the changing cluster potential. We call this mechanism “mass‐loss driven dissolution” in contrast to “two‐body relaxation driven dissolution” which occurs in the Roche volume underfilling regime. We have measured scaling exponents of the dissolution time with the two‐body relaxation time. In this experimental study we find a decreasing scaling exponent with increasing Roche volume filling factor. The evolution of the escaper number in the Roche volume overfilling limit can be described by a log‐logistic differential equation. We report the finding of a resonance condition which may play a role for the evolution of star clusters and may be calibrated by the main periodic orbit in the large island of retrograde quasiperiodic orbits in the Poincaré surfaces of section. We also report on the existence of a stability curve which may be of relevance with respect to the structure of star clusters. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
43.
Abstract— Four parameters of low‐field magnetic susceptibility (bulk value, frequency dependence, degree of anisotropy, and ellipsoid shape) have been determined for 321 stony meteorites from the National Collection of Canada. These parameters provide a basis for rapid, non‐destructive, and accurate meteorite classification as each meteorite class tends to have a distinct range of values. Chondrites show a clear trend of increasing bulk susceptibility from LL to L to H to E within the 3.6 to 5.6 logχ (in 10−9 m3/kg) range, reflecting increasing Fe‐Ni metal and Fe‐Ni sulfide content. Achondrite values range in logχ from 2.4 to 4.7 and primitive achondrites from 4.2 to 5.7. Frequency dependence is observed, using 19,000 Hz and 825 Hz, with variations in strength among meteorite classes and individual specimen dependence ranging from 1–25.6%. Degrees of anisotropy range from 1 to 53% with both oblate and prolate ellipsoids present. The aubrite class is marked by high degrees of anisotropy, low bulk magnetic susceptibility, and prolate fabric. Camel Donga is set apart from other eucrites, marked by higher bulk susceptibility, degree of anisotropy, and magnitude of oblate ellipsoid shape. The Shergotty, Nakhla, and Chassigny (SNC) meteorites show subclass distinction using frequency dependence and Chassigny is set apart with a relatively strong oblate fabric. The presence of both strong oblate and prolate fabrics among and within meteorite classes of chondritic and achondritic material points to a complex, multi‐mechanism origin for anisotropy, more so than previously thought, and likely dominated by impact processes in the later stages of stony parent body formation.  相似文献   
44.
45.
46.
47.
Oxygen isotopic compositions of silicates in eclogites and whiteschists from the Kokchetav massif were analyzed by whole‐grain CO2‐laser fluorination methods. Systematic analyses yield extremely low δ18O for eclogites, as low as ?3.9‰ for garnet; these values are comparable with those reported for the Dabie‐Sulu UHP eclogites. Oxygen isotopic compositions are heterogeneous in samples of eclogite, even on an outcrop scale. Schists have rather uniform oxygen isotope values compared to eclogites, and low δ18O is not observed. Isotope thermometry indicates that both eclogites and schists achieved high‐temperature isotopic equilibration at 500–800 °C. This implies that retrograde metamorphic recrystallization barely modified the peak‐metamorphic oxygen isotopic signatures. A possible geological environment to account for the low‐δ18O basaltic protolith is a continental rift, most likely subjected to the conditions of a cold climate. After the basalt interacted with low δ18O meteoric water, it was tectonically inserted into the surrounding sedimentary units prior to, or during subduction and UHP metamorphism.  相似文献   
48.
Summary The essential difference between the granodiorite and its wall rock fabric consists in the two well-defined deformation plans. The wall rock is a B-tectonite, the granodiorite an S-tectonite. Transport in the former was rotational and monoclinic, in the latter possibly by laminar flow parallel with the contact.The granite fabric could hardly be an in place fabric or replacement without differential movement. It would have retained the wall rock fabric, even if not the mineral composition. Transport in the granodiorite was presumably along the wall parallel S4 and the contact. The present study is barely a beginning, but it is hoped that it can be continued in the near future and extended over a wider area.With 9 figures.  相似文献   
49.
Abstract— A compilation of over 1500 Mg-isotopic analyses of Al-rich material from primitive solar system matter (meteorites) shows clearly that 26Al existed live in the early Solar System. Excesses of 26Mg observed in refractory inclusions are not the result of mixing of “fossil” interstellar 26Mg with normal solar system Mg. Some material was present that contained little or no 26Al, but it was a minor component of solar system matter in the region where CV3 and CO3 carbonaceous chondrites accreted and probably was a minor component in the accretion regions of CM chondrites as well. Data for other chondrite groups are too scanty to make similar statements. The implied long individual nebular histories of CAIs and the apparent gap of one or more million years between the start of CAI formation and the start of chondrule formation require the action of some nebular mechanism that prevented the CAIs from drifting into the Sun. Deciding whether 26Al was or was not the agent of heating that caused melting in the achondrite parent bodies hinges less on its widespread abundance in the nebula than it does on the timing of planetesimal accretion relative to the formation of the CAIs.  相似文献   
50.
The Central Scandinavian Dolerite Group (CSDG) occurs in five separate complexes in central Sweden and SW Finland. U–Pb baddeleyite ages of dolerite dikes and sills fall into three age intervals: 1264–1271 (the Dalarna complex), 1256–1259 (the Västerbotten-Ulvö-Satakunta complexes) and 1247 Ma (the Jämtland complex). Timing and spatial distribution of CSDG are unlike expressions of the voluminous and short-lived magmatism which characterises plume-associated large igneous provinces (LIPs). Protracted mafic magmatism in association with mantle plume tail (hotspot) activity beneath the Fennoscandian lithosphere or discrete events of extension behind an active margin (subduction) are considered more plausible tectonic settings. Both settings are consistent with timing, relative magma volumes between complexes and vertical ascent of individual magma pulses through the crust, as inferred from seismic sections [Korja, A., Heikkinen, P., Aaro, S., 2001. Crustal structure of the northern Baltic Sea palaeorift. Teconophysics 331, 341–358]. In the hotspot model, the lack of a linear track of intrusions can be explained by an almost stationary position of Fennoscandia relative to the hotspot, in agreement with palaeomagnetic data [Elming, S.-Å., Mattsson, H., 2001. Post Jotnian basic intrusion in the Fennoscandian Shield, and the break up of Baltica from Laurentia: a palaeomagnetic and AMS study. Precambrian Res. 108, 215–236]). Together with geological evidence, dolerite sill complexes and dike swarms in Labrador (Canada), S Greenland and central Scandinavia in the range 1234–1284 Ma are best explained by long-lived subduction along a continuous Laurentia-Baltica margin preceding Rodinia formation. There is no support for the hypothesis that CSDG was fed by magma derived from a distal mantle plume located between Baltica and Greenland and, hence, for rifting between the cratons at 1.26 Ga.The epsilon-Hf in various members of the CSDG varies between 4.7 and 10.3, which are overall higher than both older and younger Mesoproterozoic mafic intrusions in central Fennoscandia. Magma generated from a hotspot mantle source that was mixed to highly variable degrees with an enriched subcontinental lithospheric mantle could account for the wide range in Hf isotope composition. In the course of Hf isotope development work during this project we have analysed four fragments of the Geostandard 91500 reference zircon and after evaluating the existing ICPMS and TIMS data we calculate a mean 176Hf/177Hf value of 0.282303 ± 0.000003 (2σ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号