全文获取类型
收费全文 | 325篇 |
免费 | 7篇 |
国内免费 | 3篇 |
专业分类
测绘学 | 4篇 |
大气科学 | 20篇 |
地球物理 | 60篇 |
地质学 | 173篇 |
海洋学 | 8篇 |
天文学 | 55篇 |
自然地理 | 15篇 |
出版年
2020年 | 3篇 |
2018年 | 6篇 |
2017年 | 7篇 |
2015年 | 5篇 |
2014年 | 5篇 |
2013年 | 16篇 |
2012年 | 7篇 |
2011年 | 13篇 |
2010年 | 26篇 |
2009年 | 9篇 |
2008年 | 14篇 |
2007年 | 16篇 |
2006年 | 13篇 |
2005年 | 10篇 |
2004年 | 7篇 |
2003年 | 7篇 |
2002年 | 8篇 |
2001年 | 6篇 |
2000年 | 9篇 |
1999年 | 3篇 |
1998年 | 5篇 |
1997年 | 5篇 |
1996年 | 4篇 |
1995年 | 8篇 |
1994年 | 8篇 |
1993年 | 7篇 |
1992年 | 5篇 |
1990年 | 3篇 |
1989年 | 3篇 |
1987年 | 2篇 |
1986年 | 2篇 |
1984年 | 3篇 |
1982年 | 3篇 |
1979年 | 8篇 |
1978年 | 7篇 |
1977年 | 2篇 |
1973年 | 3篇 |
1971年 | 2篇 |
1970年 | 4篇 |
1969年 | 2篇 |
1966年 | 2篇 |
1965年 | 2篇 |
1962年 | 4篇 |
1960年 | 2篇 |
1955年 | 2篇 |
1954年 | 2篇 |
1953年 | 2篇 |
1948年 | 5篇 |
1931年 | 2篇 |
1921年 | 2篇 |
排序方式: 共有335条查询结果,搜索用时 0 毫秒
331.
Ernst Zinner Sachiko Amari Brigitte Wopenka Roy S. Lewis 《Meteoritics & planetary science》1995,30(2):209-226
Abstract— One hundred forty-three carbon grains, ranging in size from 2 to 8 μm, from two chemical and physical separates from the Murchison CM2 chondrite, were analyzed by ion microprobe mass spectrometry for their C- and N-isotopic compositions. Both separates are enriched in the exotic noble gas component Ne-E(L). Ninety grains were also analyzed for their H and O contents and 118, for Si. Thirteen grains were analyzed by micro-sampling laser Raman spectroscopy. Round grains have large C-isotopic anomalies with 12C/13C ratios ranging from 7 to 4500 (terrestrial ratio = 89). Nitrogen in these grains is also anomalous but shows much smaller deviations from the terrestrial composition, 14N/15N ratios ranging from 193 to 680 (terrestrial ratio = 272). Spherulitic aggregates and non-round compact grains have normal C-isotopic ratios but 15N excesses (up to 35%). Raman spectra of the analyzed grains indicate varying degrees of crystalline disorder of graphite with estimated in-plane crystallite dimensions varying from 18 Å (highly disordered, similar to terrestrial kerogen) to ~750 Å (well-crystallized graphite). Element contents of H, O, and Si are correlated with one another, and H and O are probably present in the form of organic molecules. On the basis of morphology, the round grains fall into two groups: grains with smooth, shell-like surfaces (“onions”) and grains that appear to be dense aggregates of small scales (“cauliflowers”). “Onions” tend to have lower trace element contents, isotopically light C (12C/13C > 89) and a high degree of crystalline order, whereas “cauliflowers” have a larger spread in trace element contents and C-isotopic ratios (they range from isotopically light to heavy) but tend to have a low degree of crystalline order. However, these differences exist only on average, and no clear distinction can be made for individual grains. A few limited conclusions can be drawn about the astrophysical origin of the carbon grains of this study. The 15N excesses in spherulitic aggregates and non-round grains can be explained as the result of ion-molecule reactions in molecular clouds. The round grains, on the other hand, must have formed in stellar atmospheres (circumstellar grains). Grains with isotopically light C must have formed in stellar environments characterized by He-burning, either in the atmosphere of Wolf-Rayet stars during the WC phase or in the He-burning, 12C-rich zone of a massive star, ejected by a supernova explosion. Isotopically heavy C is produced by H-burning in the CNO cycle. Possible sources for grains with heavy C are carbon stars (AGB stars during the thermally pulsing phase) or novae, but the detailed distribution of 12C/13C ratios agree neither with the distribution observed in carbon stars nor with theoretical predictions for these two types of stellar sources. 相似文献
332.
Ernst Cloos 《International Journal of Earth Sciences》1931,22(6):372-384
333.
Ahmed El Goresy Ernst Zinner Catherine Caillet 《Geochimica et cosmochimica acta》2005,69(18):4535-4556
Morphologies, petrographic settings and carbon and nitrogen isotopic compositions of graphites in the Acapulco meteorite, the latter determined by secondary ionization mass spectrometry, are reported. Seven different graphite morphologies were recognized, the majority of which occur enclosed exclusively in kamacite. Individual graphite grains also rarely occur in the silicate matrix. Kamacite rims surrounding taenite cores of metal grains are separated from the Ni-rich metal cores by graphite veneers. These graphite veneers impeded or prevented Ni-Fe interdiffusion during cooling. In addition, matrix FeNi metal contains considerable amounts of phosphorous (≈ 700 ppm) and silicon (≈ 300 ppm) (Pack et al., 2005 in preparation) thus indicating that results of laboratory cooling experiments in the Fe-Ni binary system are inapplicable to Acapulco metals. Graphites of different morphologies display a range of carbon and nitrogen isotopic compositions, indicating a diversity of source regions before accretion in the Acapulco parent body. The isotopic compositions point to at least three isotopic reservoirs from which the graphites originated: (1) A reservoir with heavy carbon, represented by graphite in silicates (δ13C = 14.3 ± 2.4 ‰ and δ15N = −103.4 ± 10.9 ‰), (2) A reservoir with isotopically light carbon and nitrogen, characteristic for the metals. Its C- and N-isotopic compositions are probably preserved in the graphite exsolutions that are isotopically light in carbon and lightest in nitrogen (δ13C = −17 to −23 ‰ δ15N = −141 to −159 ‰). (3) A reservoir with an assumed isotopic composition (δ13C ∼ −5 ‰; δ15N ∼ −50 ‰). A detailed three-dimensional tomography in reflected light microscopy of the decorations of metal-troilite spherules in the cores of orthopyroxenes and olivines and metal-troilite veins was conducted to clarify their origin. Metal and troilite veins are present only near the fusion crust. Hence, these veins are not pristine to Acapulco parent body but resulted during passage of Acapulco in Earth’s atmosphere. A thorough search for symplectite-type silicate-troilite liquid quench textures was conducted to determine the extent of closed-system partial silicate melting in Acapulco.Metal-troilite spherules in orthopyroxenes and olivines are not randomly distributed but decorate ferromagnesian silicate restite cores, indicating that the metal-spherule decoration around restite silicates took place in a silicate partial melt. Graphite inclusions in these spherules have C- and N- isotopic compositions (δ13C = −2.9 ± 2.5 ‰ and δ15N = −101.2 ± 32 ‰) close to the average values of graphite in metals and in the silicate matrix, thus strongly suggesting that they originated from a mixture of graphite inclusions in metals and silicate matrix graphite during a closed system crystallization process subsequent to silicate-metal-sulfide partial melting. Troilite-orthopyroxene quench symplectite textures in orthopyroxene rims are clear evidence that silicate-sulfide partial melting took place in Acapulco. Due to petrographic heterogeneity on a centimeter scale, bulk REE abundances of individual samples or of individual minerals provide only limited information and the REE abundances alone are not entirely adequate to unravel the formational processes that prevailed in the acapulcoite-lodranite parent body. The present investigations demonstrate the complexity of the evolutionary stages of acapulcoites from accretion to parent body processes. 相似文献
334.
Ernst J. Öpik 《Astrophysics and Space Science》1973,21(2):307-398
A morphological study of the physical and dynamical processes of planet formation is presented, with emphasis on the intermediary role of comet nuclei. Although guided by a particular model of the evolution of the pre-planetary solar nebula, implying the freezing-out of hydrogen in the region of the giant planets, the derivations and conclusions are of wider import, applicable to other cosmogonic models as well as to certain phases of star formation. The items evaluated physically, dynamically, or statistically comprise: (1) the total number mass of comets in Oort's cloud; (2) a re-evaluation of the diameters and masses of cometary nuclei; (3) the processes of nucleation from gravitational and Boltzmann instabilities of gaseous media to agglomerations of particulate matter as conditioned by inbuilt angular momentum; (4) the statistical-dynamical conditions and time scales of orbital interaction of comets with the planets and the consequences of disintegration.A consistent model proposes the formation of comets and planets in pre-planetary rings of the residual solar nebula, with subsequent ejection, chiefly by Jupiter, of the comets to Oort's sphere. Screening by absorbing matter is not only probable, but necessary to protect the comets from dis-integration during the process of ejection.Paper dedicated to Prof. H. C. Urey on the occasion of his 80th birthday on 29 April, 1973.This work has been currently supported by grants from the National Aeronautics and Space Administration, Goddard Space Flight Center, Greenbelt, Maryland. 相似文献
335.
Sachiko Amari Peter Hoppe Ernst Zinner Roy S. Lewis 《Meteoritics & planetary science》1995,30(6):679-693
Abstract— Concentrations of the trace elements Mg, Al, Ca, Ti, V, Fe, Sr, Y, Zr, Ba and Ce were determined by ion microprobe mass spectrometry in 60 individual silicon carbide (SiC) grains (in addition, Nb and Nd were determined in 20 of them), from separate KJH (size range 3.4–5.9 μm) of the Murchison carbonaceous meteorite, whose C-, N- and Si-isotopic compositions have been measured before (Hoppe et al., 1994) and provide evidence that these grains are of stellar origin. The selected SiC grains represent all previously recognized subgroups: mainstream (20 < 12C/13C < 120; 200 < 14N/15N; Si isotopes on slope 1.34 line), grains A (12C/13C < 3.5), grains B (3.5 < 12C/13C < 10), grains X (15N excesses, large 28Si excesses) and grains Y (150 < 12C/13C < 260; Si isotopes on slope 0.35 line). Data on these grains are compared with measurements on fine-grained SiC fractions. Trace-element patterns reflect both the condensation behavior of individual elements and the source composition of the stellar atmospheres. A detailed discussion of the condensation of trace elements in SiC from C-rich stellar atmospheres is given in a companion paper by Lodders and Fegley (1995). Elements such as Mg, Al, Ca, Fe and Sr are depleted because their compounds are more volatile than SiC. Elements whose compounds are believed to be more refractory than SiC can also be depleted due to condensation and removal prior to SiC condensation. Among the refractory elements, however, the heavy elements from Y to Ce (and Nd) are systematically enriched relative to Ti and V, indicating enrichments by up to a factor of 14 of the s-process elements relative to elements lighter than Fe. Such enrichments are expected if N-type carbon stars (thermally pulsing AGB stars) are the main source of circumstellar SiC grains. Large grains are less enriched than small grains, possibly because they are from different AGB stars. The trace-element patterns of subgroups such as groups A and B and grains X can at least qualitatively be understood if grains A and B come from J-type carbon stars (known to be lacking in s-process enhancements shown by N-type carbon stars) or carbon stars that had not experienced much dredge-up of He-shell material and if grains X come from supernovae. However, a remaining puzzle is how stars become carbon stars without much accompanying dredge-up of s-process elements. 相似文献