首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   5篇
  国内免费   1篇
测绘学   3篇
大气科学   15篇
地球物理   38篇
地质学   50篇
海洋学   8篇
天文学   16篇
自然地理   3篇
  2016年   5篇
  2013年   4篇
  2012年   7篇
  2011年   8篇
  2010年   3篇
  2009年   6篇
  2008年   8篇
  2006年   4篇
  2005年   2篇
  2003年   3篇
  2001年   2篇
  1999年   3篇
  1994年   3篇
  1993年   2篇
  1989年   5篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
  1963年   3篇
  1962年   4篇
  1960年   1篇
  1959年   1篇
  1958年   2篇
  1956年   2篇
  1955年   2篇
  1954年   2篇
  1952年   2篇
  1950年   1篇
  1948年   1篇
  1939年   1篇
  1938年   1篇
  1937年   1篇
  1936年   2篇
  1935年   3篇
  1934年   1篇
  1933年   1篇
  1930年   1篇
  1929年   1篇
  1925年   1篇
  1922年   1篇
排序方式: 共有133条查询结果,搜索用时 125 毫秒
101.
The El Niño of 1997–98 was one of the strongest warming events of the past century; among many other effects, it impacted phytoplankton along the Peruvian coast by changing species composition and reducing biomass. While responses of the main fish resources to this natural perturbation are relatively well known, understanding the ecosystem response as a whole requires an ecotrophic multispecies approach. In this work, we construct trophic models of the Northern Humboldt Current Ecosystem (NHCE) and compare the La Niña (LN) years in 1995–96 with the El Niño (EN) years in 1997–98. The model area extends from 4°S–16°S and to 60 nm from the coast. The model consists of 32 functional groups of organisms and differs from previous trophic models of the Peruvian system through: (i) division of plankton into size classes to account for EN-associated changes and feeding preferences of small pelagic fish, (ii) increased division of demersal groups and separation of life history stages of hake, (iii) inclusion of mesopelagic fish, and (iv) incorporation of the jumbo squid (Dosidicus gigas), which became abundant following EN. Results show that EN reduced the size and organization of energy flows of the NHCE, but the overall functioning (proportion of energy flows used for respiration, consumption by predators, detritus and export) of the ecosystem was maintained. The reduction of diatom biomass during EN forced omnivorous planktivorous fish to switch to a more zooplankton-dominated diet, raising their trophic level. Consequently, in the EN model the trophic level increased for several predatory groups (mackerel, other large pelagics, sea birds, pinnipeds) and for fishery catch. A high modeled biomass of macrozooplankton was needed to balance the consumption by planktivores, especially during EN condition when observed diatoms biomass diminished dramatically. Despite overall lower planktivorous fish catches, the higher primary production required-to-catch ratio implied a stronger ecological impact of the fishery and stresses the need for precautionary management of fisheries during and after EN. During EN energetic indicators such as the lower primary production/total biomass ratio suggest a more energetically efficient ecosystem, while reduced network indicators such as the cycling index and relative ascendency indicate of a less organized state of the ecosystem. Compared to previous trophic models of the NHCE we observed: (i) a shrinking of ecosystem size in term of energy flows, (ii) slight changes in overall functioning (proportion of energy flows used for respiration, consumption by predators and detritus), and (iii) the use of alternate pathways leading to a higher ecological impact of the fishery for planktivorous fish.  相似文献   
102.
The Descent Imager/Spectral Radiometer (DISR) of the Huygens probe was in an excellent position to view aspects of rain as it descended through Titan's atmosphere. Rain may play an important part of the methane cycle on Titan, similar to the water cycle on Earth, but rain has only been indirectly inferred in previous studies. DISR detected two dark atmospheric layers at 11 and 21 km altitude, which can be explained by a local increase in aerosol size by about 5-10%. These size variations are far smaller than those in rain clouds, where droplets grow some 1000-fold. No image revealed a rainbow, which implies that the optical depth of raindrops was less than ∼0.0002/km. This upper limit excludes rain and constrains drizzle to extremely small rates of less than 0.0001 mm/h. However, a constant drizzle of that rate over several years would clear the troposphere of aerosols faster than it can be replenished by stratospheric aerosols. Hence, either the average yearly drizzle rate near the equator was even less (<0.1 mm/yr), or the observed aerosols came from somewhere else. The implied dry environment is consistent with ground-based imaging showing a lack of low-latitude clouds during the years before the Huygens descent. Features imaged on Titan's surface after landing, which might be interpreted as raindrop splashes, were not real, except for one case. This feature was a dewdrop falling from the outermost baffle of the DISR instrument. It can be explained by warm, methane-moist air rising along the bottom of the probe and condensing onto the cold baffle.  相似文献   
103.
Tissues of bowhead, beluga, and gray whales were analyzed for Ag, Cd, Cu, Se, Zn, THg and MeHg (belugas only). Delta15N and delta13C in muscle were used to estimate trophic position and feeding habitat, respectively. Trace element concentrations in tissues were significantly different among whale species. Hepatic Ag was higher in belugas than bowheads and gray whales. Gray whales had lower Cd concentrations in liver and kidney than bowhead and belugas and a sigmoid correlation of Cd with length was noted for all whales. Renal and hepatic Se and THg were higher in belugas than in baleen whales. The hepatic molar ratio of Se:THg exceeded 1:1 in all species and was negatively correlated to body length. Hepatic and renal Zn in subsistence-harvested gray whales was lower than concentrations for stranded whales. Se:THg molar ratios and tissue concentrations of Zn may show promise as potential indicators of immune status and animal health.  相似文献   
104.
Anthropogenic greenhouse gas emissions are expected to lead to more frequent and intense summer temperature extremes, not only due to the mean warming itself, but also due to changes in temperature variability. To test this hypothesis, we analyse daily output of ten PRUDENCE regional climate model scenarios over Europe for the 2071–2100 period. The models project more frequent temperature extremes particularly over the Mediterranean and the transitional climate zone (TCZ, between the Mediterranean to the south and the Baltic Sea to the north). The projected warming of the uppermost percentiles of daily summer temperatures is found to be largest over France (in the region of maximum variability increase) rather than the Mediterranean (where the mean warming is largest). The underlying changes in temperature variability may arise from changes in (1) interannual temperature variability, (2) intraseasonal variability, and (3) the seasonal cycle. We present a methodology to decompose the total daily variability into these three components. Over France and depending upon the model, the total daily summer temperature variability is projected to significantly increase by 20–40% as a result of increases in all three components: interannual variability (30–95%), seasonal variability (35–105%), and intraseasonal variability (10–30%). Variability changes in northern and southern Europe are substantially smaller. Over France and parts of the TCZ, the models simulate a progressive warming within the summer season (corresponding to an increase in seasonal variability), with the projected temperature change in August exceeding that in June by 2–3 K. Thus, the most distinct warming is superimposed upon the maximum of the current seasonal cycle, leading to a higher intensity of extremes and an extension of the summer period (enabling extreme temperatures and heat waves even in September). The processes driving the variability changes are different for the three components but generally relate to enhanced land–atmosphere coupling and/or increased variability of surface net radiation, accompanied by a strong reduction of cloudiness, atmospheric circulation changes and a progressive depletion of soil moisture within the summer season. The relative contribution of these processes differs substantially between models.  相似文献   
105.
Uncertainties in the climate response to a doubling of atmospheric CO2 concentrations are quantified in a perturbed land surface parameter experiment. The ensemble of 108 members is constructed by systematically perturbing five poorly constrained land surface parameters of global climate model individually and in all possible combinations. The land surface parameters induce small uncertainties at global scale, substantial uncertainties at regional and seasonal scale and very large uncertainties in the tails of the distribution, the climate extremes. Climate sensitivity varies across the ensemble mainly due to the perturbation of the snow albedo parameterization, which controls the snow albedo feedback strength. The uncertainty range in the global response is small relative to perturbed physics experiments focusing on atmospheric parameters. However, land surface parameters are revealed to control the response not only of the mean but also of the variability of temperature. Major uncertainties are identified in the response of climate extremes to a doubling of CO2. During winter the response both of temperature mean and daily variability relates to fractional snow cover. Cold extremes over high latitudes warm disproportionately in ensemble members with strong snow albedo feedback and large snow cover reduction. Reduced snow cover leads to more winter warming and stronger variability decrease. As a result uncertainties in mean and variability response line up, with some members showing weak and others very strong warming of the cold tail of the distribution, depending on the snow albedo parametrization. The uncertainty across the ensemble regionally exceeds the CMIP3 multi-model range. Regarding summer hot extremes, the uncertainties are larger than for mean summer warming but smaller than in multi-model experiments. The summer precipitation response to a doubling of CO2 is not robust over many regions. Land surface parameter perturbations and natural variability alter the sign of the response even over subtropical regions.  相似文献   
106.
107.
108.
SAR stereo image analysis for 3D information extraction is mostly carried out based on imagery taken under same-side or opposite-side viewing conditions. For urban scenes in practice stereo is up to now usually restricted to the first configuration, because increasing image dissimilarity connected with rising illumination direction differences leads to a lack of suitable features for matching, especially in the case of low or medium resolution data. However, due to two developments SAR stereo from arbitrary viewing conditions becomes an interesting option for urban information extraction. The first one is the availability of airborne sensor systems, which are capable of more flexible data acquisition in comparison to satellite sensors. This flexibility enables multi-aspect analysis of objects in built-up areas for various kinds of purpose, such as building recognition, road network extraction, or traffic monitoring. The second development is the significant improvement of the geometric resolution providing a high level of detail especially of roof features, which can be observed from a wide span of viewpoints. In this paper, high-resolution SAR images of an urban scene are analyzed in order to infer buildings and their height from the different layover effects in views taken from orthogonal aspect angles. High level object matching is proposed that relies on symbolic data, representing suitable features of urban objects. Here, a knowledge-based approach is applied, which is realized by a production system that codes a set of suitable principles of perceptual grouping in its production rules. The images are analyzed separately for the presence of certain object groups and their characteristics frequently appearing on buildings, such as salient rows of point targets, rectangular structures or symmetries. The stereo analysis is then accomplished by means of productions that combine and match these 2D image objects and infer their height by 3D clustering. The approach is tested using real SAR data of an urban scene.  相似文献   
109.
This paper presents a combined method to model grain crushing effects with discrete element method.This method combines the two most commonly used concepts to model grain crushing in DEM,i.e.the replacement method and the agglomerate method,so that it is both accurate and efficient.The method can be easily implemented.The performance is shown by several DEM simulations of biaxial tests.Particles with different crush-abilities are modeled.DEM simulation results with and without grain crushing are compared and discussed.The change of grain size distribution due to grain crushing is also investigated.  相似文献   
110.
The highly deformed c. 3800 Ma Isua supracrustal belt is a fragment of a more extensive Early Archaean sedimentary and volcanic succession intruded by and tectonically intercalated with tonalitic and granitic Amftsoq gneisses in the period 3800-3600 Ma. The supracrustal rocks recrystallised under amphibolite facies conditions between 3800 and 3600 Ma, in the Late Archaean and locally at c. 1800 Ma. Layered sequences of rock of sedimentary and probable volcanic origin form over 50% of the belt. Bodies of high MgAl basic rocks and ultramafic rocks were intruded into the layered sequences prior to isoclinal folding and intrusion of Amitsoq gneisses. The layered rocks which are < 1 km thick are divided into two sequences, that are in faulted contact with each other. The way-up of these sequences has been determined from facing-directions of locally-preserved graded layering in felsic metasediments at several localities. The overall upwards change in sedimentary succession is interpreted as showing change from dominantly basic to dominantly felsic volcanism which provided the major clastic component of the sediments. Clastic sedimentation took place against a background of chemical sedimentation, shown by interlayers of banded iron formation, metachert and calc-silicate rocks throughout the sequences. The felsic rocks locally preserve graded bedding and possible conglomerate structures, indicating deposition from turbidite flows and possibly as debris flows. Nodules in the felsic rocks contain structures interpreted as fiammé. There is an irregular enrichment in K2O/Na2O in many of the felsic rocks at constant SiO2 and Al2O3 content, interpreted as owing to alteration of original andesitic to dacitic volcanic rocks. Banded iron formations locally contain conglomeratic structures suggesting sedimentary reworking, possibly under shallow water conditions. Lithological and geochemical characters of the clastic components of the supracrustal sequences are consistent with derivation from felsic and basic volcanic rocks and do not require a continental source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号