首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8730篇
  免费   1020篇
  国内免费   1346篇
测绘学   669篇
大气科学   1442篇
地球物理   1967篇
地质学   3863篇
海洋学   1359篇
天文学   666篇
综合类   365篇
自然地理   765篇
  2024年   23篇
  2023年   66篇
  2022年   205篇
  2021年   294篇
  2020年   251篇
  2019年   299篇
  2018年   395篇
  2017年   344篇
  2016年   439篇
  2015年   361篇
  2014年   506篇
  2013年   617篇
  2012年   499篇
  2011年   601篇
  2010年   577篇
  2009年   595篇
  2008年   536篇
  2007年   542篇
  2006年   508篇
  2005年   409篇
  2004年   345篇
  2003年   317篇
  2002年   342篇
  2001年   288篇
  2000年   236篇
  1999年   200篇
  1998年   125篇
  1997年   124篇
  1996年   87篇
  1995年   106篇
  1994年   77篇
  1993年   62篇
  1992年   63篇
  1991年   54篇
  1990年   58篇
  1989年   53篇
  1988年   32篇
  1987年   51篇
  1986年   37篇
  1985年   26篇
  1984年   38篇
  1983年   53篇
  1982年   35篇
  1981年   32篇
  1980年   39篇
  1979年   22篇
  1978年   14篇
  1977年   24篇
  1975年   21篇
  1974年   18篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
361.
The pile-driving method produces considerable noise and vibrations. Hence, an auger-drilled pile method was developed as a low-noise and -vibration substitute. However, this method does not guarantee the bearing capacity of the pile unless some amount of pile-driving is performed. Therefore, the noise and vibration problems cannot be completely solved. In this study, a prebored screw pile method is proposed to solve these problems. In this method, piles are constructed by the rotary penetration of a screw pile into a prebored hole filled with some cement milk and whose diameter is smaller than that of the screw pile. To determine the shape of the screw pile, laboratory tests with model screw piles were conducted. Also, field load tests were conducted on an actual screw pile fabricated based on the laboratory test result and on a smooth-surfaced pile. In addition, the behavior of the screw pile was estimated by using three-dimensional finite element analysis. The results of the field load test and the numerical simulation showed that the ultimate bearing capacity and the unit skin friction of the screw pile are very superior to those of the smooth-surfaced pile and the cement milk is an important factor in the prebored screw pile method.  相似文献   
362.
Photo-protective functions were investigated in phytoplankton assemblages at Kongsfjorden, Svalbard in spring, using their UV-absorbing compounds (mycosporine-like amino acids (MAAs)), xanthophyll pigments (diadinoxanthin (DD) and diatoxanthin (DT)) and < beta >- dimethylsulphoniopropionate (< beta >-DMSP). The dominant phytoplankton species in the inner bay were dominated by Phaeocystis spp. and nanoflagellates, while the offshore waters were dominated by Thalassiosira spp. In the inner bay, UVabsorbing compounds and xanthophyll pigments exhibited higher ratios of MAA to chlorophyll a (MAA:chl a ratio), and both DD and DT to chlorophyll a (DD:chl a ratio and DT:chl a ratio), respectively. Thus, the photoprotective-pigments such as DD and DT appear to complement MAAs in the natural phytoplankton assemblage. However, the ratio of < beta >-DMSP to chlorophyll a (< beta >-DMSP:chl a ratio) did not show a distinct spatial distribution according to environmental factors or interspecies differences. In this study, we found that photoprotective compounds occurred in a manner dependent on the phytoplankton species composition in Kongsfjorden Bay, where Phaeocystis is the dominant species.  相似文献   
363.
In order to determine the effect of twine thickness on the size-selectivity of the driftnet used for the yellow croaker, size-selectivity tests were conducted with three different twine thicknesses (monofilament diameters of 0.279 mm (number’s method; No. 3), 0.321 mm (No. 4), and 0.360 mm (No. 5)) of driftnets for the yellow croaker in the seas around Chooja-do, Jeju Islands. The selectivity curve was estimated by using Kitahara’s method. In order to determine the physical properties of the twine used in the experimental fishing nets, we measured the breaking load, elongation, and stiffness under both dry and wet conditions. In terms of physical properties, the thinnest twine (No. 3) had the strongest breaking strength per unit cross-sectional area, along with good elongation and excellent flexibility. The thickest twine (No. 5) had the lowest flexibility. In terms of selectivity, the net of No. 3 twine showed the broadest selection range and, thus, a relatively low selectivity compared with the other nets, while the less flexible net of No. 5 twine showed the narrowest selectivity range and high selectivity. In addition, it was found that a thicker twine resulted in a smaller haul of small fish. Therefore, it can be inferred that the thickness of the twine affects the size of the catch and selectivity, and thus the size composition of the catch as well.  相似文献   
364.
陆廷清  胡明  刘墨翰  刘鹏  汪星 《中国地质》2018,45(4):859-860
正1研究目的(Objective)自2011年在四川南部地区下古生界海相地层中获得页岩气工业性突破以来,在四川盆地进行的海相页岩气开发得到多方的重视和迅速发展,随之而来的是人们对页岩气勘探开发过程中对环境影响的关注。页岩气,它以吸附或游离状态为主要方式赋存于富有机质泥页岩及其夹层中,是一种非常规天然气。与常规天然气相比,页岩气气质优良,甲烷含量更高。页岩气化学成分主要为甲烷(CH4),一般含量在85%以上,最高达到99.8%,另外还含有少量的乙烷(C2H6)、丙烷(C3H8)和丁烷(C4H10)。一般认为我国页岩气中可以存在少量氮  相似文献   
365.
藏北羌塘南部埃迪卡拉系达布热组的建立及其地质意义   总被引:1,自引:0,他引:1  
王明  曾孝文  李才  李航  解超明  范建军 《地质通报》2018,37(8):1379-1386
羌塘位于青藏高原腹地,构造上处于冈瓦纳大陆北缘。因其特殊的构造位置,羌塘地体的起源及构造演化对于探讨青藏高原的早期形成演化、冈瓦纳大陆裂解,以及特提斯洋演化等关键科学问题至关重要。最近,在羌塘南部达布热地区发现一套碎屑岩夹玄武岩的岩石组合,碎屑岩具有低成分成熟度的特点,虽然岩石发生了低绿片岩相变质,但仍然保留了原岩类复理石沉积的特点。根据碎屑锆石定年结果,该套地层中碎屑锆石的最年轻年龄为550Ma左右。此外,该套地层中玄武岩夹层的测年结果表明,该套地层形成于埃迪卡拉纪(约550Ma)。结合地层剖面及区域地层对比,建立了埃迪卡拉纪达布热组。达布热组是羌塘地区首次发现的埃迪卡拉纪地层,该组地层的建立为探讨冈瓦纳大陆北缘构造演化提供了重要线索。  相似文献   
366.
徐建鑫  李才  范建军  王明  解超明 《地质通报》2018,37(8):1541-1553
拉果错蛇绿岩是狮泉河-阿索-嘉黎蛇绿岩带中出露最完整的蛇绿岩组合之一,对恢复和反演该缝合带所代表洋盆演化具有重要意义。然而,目前拉果错蛇绿岩的成因及构造环境还不清楚,时代也存在争议。选择拉果错蛇绿岩中的斜长花岗岩和堆晶辉长岩作为研究对象,开展了野外勘查及剖面的测制,以及地球化学、LA-ICP-MS锆石U-Pb定年及Lu-Hf同位素研究,并结合区域地层、岩浆岩等相关资料,探讨了拉果错蛇绿岩的构造属性。拉果错斜长花岗岩和辉长岩野外呈整合接触,地球化学特征表明二者具有同源性,具有与E-MORB(富集大洋中脊玄武岩)相似的稀土元素配分形式和微量特征;Lu-Hf同位素显示岩浆源区为亏损地幔,由多种组分组成,可能来源于亏损地幔和Ⅱ型富集地幔二组分混合的地幔源区;斜长花岗岩和辉长岩LA-ICP-MS锆石U-Pb定年分别获得184.1±0.79Ma和183.5±2.2Ma的谐和年龄,代表了拉果错蛇绿岩的形成时代。研究表明,拉果错蛇绿岩形成于具有强烈大洋中脊玄武岩特征的弧后盆地环境。  相似文献   
367.
This paper presents a novel mass-conservative mixed multiscale method for solving flow equations in heterogeneous porous media. The media properties (the permeability) contain multiple scales and high contrast. The proposed method solves the flow equation in a mixed formulation on a coarse grid by constructing multiscale basis functions. The resulting velocity field is mass-conservative on the fine grid. Our main goal is to obtain first-order convergence in terms of the mesh size which is independent of local contrast. This is achieved, first, by constructing some auxiliary spaces, which contain global information that cannot be localized, in general. This is built on our previous work on the generalized multiscale finite element method (GMsFEM). In the auxiliary space, multiscale basis functions corresponding to small (contrast-dependent) eigenvalues are selected. These basis functions represent the high-conductivity channels (which connect the boundaries of a coarse block). Next, we solve local problems to construct multiscale basis functions for the velocity field. These local problems are formulated in the oversampled domain, taking into account some constraints with respect to auxiliary spaces. The latter allows fast spatial decay of local solutions and, thus, allows taking smaller oversampled regions. The number of basis functions depends on small eigenvalues of the local spectral problems. Moreover, multiscale pressure basis functions are needed in constructing the velocity space. Our multiscale spaces have a minimal dimension, which is needed to avoid contrast dependence in the convergence. The method’s convergence requires an oversampling of several layers. We present an analysis of our approach. Our numerical results confirm that the convergence rate is first order with respect to the mesh size and independent of the contrast.  相似文献   
368.
Multi-phase flow in porous media in the presence of viscous, gravitational, and capillary forces is described by advection diffusion equations with nonlinear parameters of relative permeability and capillary pressures. The conventional numerical method employs a fully implicit finite volume formulation. The phase-potential-based upwind direction is commonly used in computing the transport terms between two adjacent cells. The numerical method, however, often experiences non-convergence in a nonlinear iterative solution due to the discontinuity of transmissibilities, especially in transition between co-current and counter-current flows. Recently, Lee et al. (Adv. Wat. Res. 82, 27–38, 2015) proposed a hybrid upwinding method for the two-phase transport equation that comprises viscous and gravitational fluxes. The viscous part is a co-current flow with a one-point upwinding based on the total velocity and the buoyancy part is modeled by a counter-current flow with zero total velocity. The hybrid scheme yields C1-continuous discretization for the transport equation and improves numerical convergence in the Newton nonlinear solver. Lee and Efendiev (Adv. Wat. Res. 96, 209–224, 2016) extended the hybrid upwind method to three-phase flow in the presence of gravity. In this paper, we present the hybrid-upwind formula in a generalized form that describes two- and three-phase flows with viscous, gravity, and capillary forces. In the derivation of the hybrid scheme for capillarity, we note that there is a strong similarity in mathematical formulation between gravity and capillarity. We thus greatly utilize the previous derivation of the hybrid upwind scheme for gravitational force in deriving that for capillary force. Furthermore, we also discuss some mathematical issues related to heterogeneous capillary domains and propose a simple discretization model by adapting multi-valued capillary pressures at the end points of capillary pressure curves. We demonstrate this new model always admits a consistent solution that is within the discretization error. This new generalized hybrid scheme yields a discretization method that improves numerical stability in reservoir simulation.  相似文献   
369.
Fan  Jian-Jun  Li  Cai  Liu  Jin-Heng  Wang  Ming  Liu  Yi-Ming  Xie  Chao-Ming 《International Journal of Earth Sciences》2018,107(5):1755-1775
International Journal of Earth Sciences - In this paper, we present new major and trace element chemical data for the basalts and phonolites of the Nare ocean island fragment (NaOI), as well as...  相似文献   
370.
Steelmaking-coal waste rock placed in mountain catchments in the Elk Valley, British Columbia, Canada, drain constituents of interest (CIs) to surface water downgradient of the waste rock dumps. The role of groundwater in transporting CIs in the headwaters of mountain catchments is not well understood. This study characterizes the physical hydrogeology of a portion of a 10-km2 headwater catchment (West Line Creek) downgradient of a 2.7-km2 waste rock dump placed over a natural headwater valley-bottom groundwater system. The study site was instrumented with 13 monitoring wells. Drill core samples were collected to determine subsurface lithology and geotechnical properties. The groundwater system was characterized using field testing and water-level monitoring. The valley-bottom sediments were composed of unconsolidated glacial and meltwater successions (<64 m thick) deposited as a series of cut and fill structures overlying shale bedrock. An unconfined basal alluvial aquifer located above fractured bedrock was identified as the primary conduit for groundwater flow toward Line Creek (650 m from the toe of the dump). Discharge through the basal alluvial aquifer was estimated using the geometric mean hydraulic conductivity (±1 standard deviation). These calculations suggest groundwater discharge could account for approximately 15% (ranging from 2 to 60%) of the total water discharged from the watershed. The residence time from the base of the waste rock dump to Line Creek was estimated at <3 years. The groundwater system was defined as a snowmelt (i.e., nival) regime dominated by direct recharge (percolation of precipitation) across the catchment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号