首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2086篇
  免费   114篇
  国内免费   85篇
测绘学   61篇
大气科学   282篇
地球物理   483篇
地质学   751篇
海洋学   193篇
天文学   307篇
综合类   15篇
自然地理   193篇
  2023年   10篇
  2022年   21篇
  2021年   38篇
  2020年   49篇
  2019年   48篇
  2018年   71篇
  2017年   65篇
  2016年   103篇
  2015年   63篇
  2014年   90篇
  2013年   137篇
  2012年   78篇
  2011年   126篇
  2010年   102篇
  2009年   121篇
  2008年   116篇
  2007年   107篇
  2006年   108篇
  2005年   86篇
  2004年   84篇
  2003年   66篇
  2002年   60篇
  2001年   47篇
  2000年   38篇
  1999年   45篇
  1998年   30篇
  1997年   26篇
  1996年   24篇
  1995年   25篇
  1994年   22篇
  1993年   18篇
  1992年   11篇
  1991年   20篇
  1990年   22篇
  1989年   19篇
  1988年   7篇
  1987年   14篇
  1986年   17篇
  1985年   11篇
  1984年   9篇
  1983年   17篇
  1982年   19篇
  1981年   19篇
  1980年   12篇
  1979年   10篇
  1978年   8篇
  1977年   8篇
  1976年   9篇
  1974年   9篇
  1973年   6篇
排序方式: 共有2285条查询结果,搜索用时 312 毫秒
241.
242.
243.
244.
Climate Dynamics - We investigate the global distribution of hourly precipitation and its connections with the El Niño–Southern Oscillation (ENSO) using both satellite precipitation...  相似文献   
245.
An analysis of the dynamics of the flow over a street canyon immersed in an atmospheric boundary layer is presented, using particle image velocimetry measurements in a wind tunnel. Care was taken to generate a 1:200 model scale urban type boundary layer that is correctly scaled to the size of the canyon buildings. Using proper orthogonal decomposition (POD) of the velocity field and conditional averaging techniques, it is first shown that the flow above the opening of the canyon consists of a shear layer separating from the upstream obstacle, animated by a coherent flapping motion and generating large-scale vortical structures. These structures are alternately injected into the canyon or shed off the obstacle into the outer flow. It is shown that unsteady fluid exchanges between the canyon and the outer flow are mainly driven by the shear layer. Finally, using POD, the non-linear interaction between the large-scale structures of the oncoming atmospheric boundary layer and the flow over the canyon is demonstrated.  相似文献   
246.
A step-up street canyon is a characteristic urban element composed of two buildings in which the height of the upwind building ( $H_\mathrm{u}$ ) is less than the height of the downwind building ( $H_\mathrm{d}$ ). Here, the effect of canyon geometry on the flow structure in isolated step-up street canyons is investigated through isothermal wind-tunnel measurements. The measurements were acquired along the vertical symmetry plane of model buildings using two-dimensional particle image velocimetry (PIV) for normal approach flow. The building-height ratios considered were: $H_\mathrm{d}/ H_\mathrm{u} \approx 3$ , and $H_\mathrm{d}/ H_\mathrm{u} \approx 1.67$ . For each building-height ratio, the along-wind lengths (L) of the upwind and downwind buildings, and the street-canyon width (S) were kept constant, with $L \approx S$ . The cross-wind widths (W) of the upwind and downwind buildings were varied uniformly from $W/S \approx 1$ through $W/S \approx 4$ , in increments of $W/S \approx 1$ . The objective of the work was to characterize the changes in the flow structure in step-up canyons as a function of W/S, for fixed L, S, and $H_\mathrm{d}/H_\mathrm{u}$ values. The results indicate that the in-canyon flow structure does not vary significantly for $H_\mathrm{d}/H_\mathrm{u} \approx 3$ for the W/S values considered. Qualitatively, for $H_\mathrm{d}/H_\mathrm{u} \approx 3$ , the upwind building behaves as an obstacle in the upwind cavity of the downwind building. In contrast, the flow patterns observed for the $H_\mathrm{d}/H_\mathrm{u} \approx 1.67$ configurations are unique and counter-intuitive, and depend strongly on building width (W/S). For $W/S \approx 1$ and $W/S \approx 2$ , the effect of lateral flow into the canyon is so prominent that even the mean flow patterns are highly ambiguous. For $W/S \approx 3$ and 4, the flow along the vertical symmetry plane is more shielded from the lateral flow, and hence a stable counter-rotating vortex pair is observed in the canyon. In addition to these qualitative features, a quantitative analysis of the mean flow field and turbulence stress field is presented.  相似文献   
247.
Similarity Scaling Over a Steep Alpine Slope   总被引:5,自引:5,他引:0  
In this study, we investigate the validity of similarity scaling over a steep mountain slope (30–41 $^\circ $ ). The results are based on eddy-covariance data collected during the Slope Experiment near La Fouly (SELF-2010); a field campaign conducted in a narrow valley of the Swiss Alps during summer 2010. The turbulent fluxes of heat and momentum are found to vary significantly with height in the first few metres above the inclined surface. These variations exceed by an order of magnitude the well-accepted maximum 10 % required for the applicability of Monin–Obukhov similarity theory in the surface layer. This could be due to a surface layer that is too thin to be detected or to the presence of advective fluxes. It is shown that local scaling can be a useful tool in these cases when surface-layer theory breaks down. Under convective conditions and after removing the effects of self-correlation, the normalized standard deviations of slope-normal wind velocity, temperature and humidity scale relatively well with $z/\varLambda $ , where $z$ is the measurement height and $\varLambda (z)$ the local Obukhov length. However, the horizontal velocity fluctuations are not correlated with $z/\varLambda $ under all stability regimes. The non-dimensional gradients of wind velocity and temperature are also investigated. For those, the local scaling appears inappropriate, particularly at night when shallow drainage flows prevail and lead to negative wind-speed gradients close to the surface.  相似文献   
248.
This study presents an analysis of climate-change impacts on the water resources of two basins located in northern France, by integrating four sources of uncertainty: climate modelling, hydrological modelling, downscaling methods, and emission scenarios. The analysis focused on the evolution of the water budget, the river discharges and piezometric heads. Seven hydrological models were used, from lumped rainfall-discharge to distributed hydrogeological models, and led to quite different estimates of the water-balance components. One of the hydrological models, CLSM, was found to be unable to simulate the increased water stress and was, thus, considered as an outlier even though it gave fair results for the present day compared to observations. Although there were large differences in the results between the models, there was a marked tendency towards a decrease of the water resource in the rivers and aquifers (on average in 2050 about ?14 % and ?2.5 m, respectively), associated with global warming and a reduction in annual precipitation (on average in 2050 +2.1 K and ?3 %, respectively). The uncertainty associated to climate models was shown to clearly dominate, while the three others were about the same order of magnitude and 3–4 times lower. In terms of impact, the results found in this work are rather different from those obtained in a previous study, even though two of the hydrological models and one of the climate models were used in both studies. This emphasizes the need for a survey of the climatic-change impact on the water resource.  相似文献   
249.
Synchrotron‐based Fourier transform infrared spectroscopy and Raman spectroscopy are applied with submicrometer spatial resolution to multiple grains of Sutter's Mill meteorite, a regolith breccia with CM1 and CM2 lithologies. The Raman and infrared active functional groups reveal the nature and distribution of organic and mineral components and confirm that SM12 reached higher metamorphism temperatures than SM2. The spatial distributions of carbonates and organic matter are negatively correlated. The spatial distributions of aliphatic organic matter and OH relative to the distributions of silicates in SM2 differ from those in SM12, supporting a hypothesis that the parent body of Sutter's Mill is a combination of multiple bodies with different origins. The high aliphatic CH2/CH3 ratios determined from band intensities for SM2 and SM12 grains are similar to those of IDPs and less altered carbonaceous chondrites, and they are significantly higher than those in other CM chondrites and diffuse ISM objects.  相似文献   
250.
We report in situ O isotope and chemical compositions of magnetite and olivine in chondrules of the carbonaceous chondrites Watson‐002 (anomalous CK3) and Asuka (A)‐881595 (ungrouped C3). Magnetite in Watson‐002 occurs as inclusion‐free subhedral grains and rounded inclusion‐bearing porous grains replacing Fe,Ni‐metal. In A‐881595, magnetite is almost entirely inclusion‐free and coexists with Ni‐rich sulfide and less abundant Ni‐poor metal. Oxygen isotope compositions of chondrule olivine in both meteorites plot along carbonaceous chondrite anhydrous mineral (CCAM) line with a slope of approximately 1 and show a range of Δ17O values (from approximately ?3 to ?6‰). One chondrule from each sample was found to contain O isotopically heterogeneous olivine, probably relict grains. Oxygen isotope compositions of magnetite in A‐881595 plot along a mass‐dependent fractionation line with a slope of 0.5 and show a range of Δ17O values from ?2.4‰ to ?1.1‰. Oxygen isotope compositions of magnetite in Watson‐002 cluster near the CCAM line and a Δ17O value of ?4.0‰ to ?2.9‰. These observations indicate that magnetite and chondrule olivine are in O isotope disequilibrium, and, therefore, not cogenetic. We infer that magnetite in CK chondrites formed by the oxidation of pre‐existing metal grains by an aqueous fluid during parent body alteration, in agreement with previous studies. The differences in Δ17O values of magnetite between Watson‐002 and A‐881595 can be attributed to their different thermal histories: the former experienced a higher degree of thermal metamorphism that led to the O isotope exchange between magnetite and adjacent silicates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号