首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
地球物理   22篇
地质学   12篇
海洋学   3篇
天文学   1篇
自然地理   1篇
  2021年   1篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   2篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2007年   2篇
  2006年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
  1988年   3篇
排序方式: 共有39条查询结果,搜索用时 62 毫秒
21.
Foundation impedance functions provide a simple means to account for soil–structure interaction (SSI) when studying seismic response of structures. Impedance functions represent the dynamic stiffness of the soil media surrounding the foundation. The fact that impedance functions are frequency dependent makes it difficult to incorporate SSI in standard time-history analysis software. This paper introduces a simple method to convert frequency-dependent impedance functions into time-domain filters. The method is based on the least-squares approximation of impedance functions by ratios of two complex polynomials. Such ratios are equivalent, in the time-domain, to discrete-time recursive filters, which are simple finite-difference equations giving the relationship between foundation forces and displacements. These filters can easily be incorporated into standard time-history analysis programs. Three examples are presented to show the applications of the method.  相似文献   
22.
Recordings of micro- and moderate-size local earthquakes have been used to quantify site effects in the central-west Turkey which contains one of the world’s best examples of a rapid intra-continental extension with its high population and industrial potential. We analyzed 436 earthquakes with local magnitudes ranging between 2.0 and 5.6 using three component digital recordings from 32 stations. Site functions were obtained using two different spectral ratio approaches (horizontal to vertical spectral ratio, HVSR, and standard spectral ratio, SSR). HVSR estimates of transverse and radial S-waves were compared with one another. Epicentral distance, magnitude and back-azimuth dependencies of site functions were also evaluated. In general, HVSR values from transverse and radial S-waves are similar within a factor of 2. The back-azimuth dependencies of transverse S-wave HVSR results are more significant than distance and magnitude dependencies. On the other hand, averaging of transverse and radial S-wave HVSR results eliminates systematic back-azimuth dependencies caused by source radiation effects. Distributions of HVSR estimates along ~N–S linear array, which traversed main grabens in the region with a station spacing of 3–4 km, reflect subsurface geological complexities in the region. The sites located near the basin edges are characterized by broader HVSR curves. Broad HVSR peaks could be attributed to the complexity of wave propagation related to significant 2D/3D velocity variations at the sediment–bedrock interface near the basin edges. The results also show that, even if the site is located on a horst, the presence of weathered zones along the surface could cause moderate frequency dependent site effects. Comparison of HVSR and SSR estimates for the stations on the graben sites showed that SSR estimates give larger values at lower frequencies which could be attributed to lateral variations in regional velocity and attenuation values caused by basin geometry and edge effects.  相似文献   
23.
We have studied the temperature response to changes in the CO2 concentration in the middle and upper atmosphere using the Coupled Middle Atmosphere–Thermosphere Model 2 (CMAT2). We have performed simulations with a range of CO2 concentrations and three different ways of accounting for the effects of gravity waves, to allow for comparison with previous studies and sensitivity analyses. We initially find that the response of the model to the changes in CO2 concentration which took place between 1965 and 1995 (320–360 ppm) is strongly dependent on the gravity wave parameterization that is used, but this is to a large degree due to steps or kinks in an otherwise nearly linear curve describing the temperature as a function of CO2 concentration. We have not been able to identify the cause of these steps as part of the present study, which is a limitation and must be studied in future work. Here we treated the steps as model noise and rather focused on correcting for their effects by fitting straight lines to the temperature–CO2 curves to estimate the overall slope of the curves. From these slopes we were able to obtain more robust trend estimates than can be obtained by comparing only two model simulations, as is normally done in other, similar studies. The corrected temperature responses to a 40 ppm change in CO2 concentration still show up to 15–17% sensitivity to the gravity wave parameterization in the mesosphere and thermosphere. This remaining sensitivity is likely to be related to the fundamental differences in the way a change in temperature modifies the propagation and dissipation characteristics of gravity waves in each parameterization, which is particularly different for linear and non-linear schemes. The corrected trends we find are largely in agreement with other modelling studies, and therefore do not fully explain observed trends, which are typically larger than those predicted by modelling studies. However, modelling results could be similarly sensitive to other model parameters and settings, for example to gravity wave characteristics or solar activity level, and this should be further investigated as well.  相似文献   
24.
The procedure presented in this paper has been developed for the design of grouted rock bolts in rock tunnels during preliminary design stage. The proposed approach provides a step-by-step procedure to set up a series of practical guidelines for optimum pattern of rock bolting in a variety of rock mass qualities. For this purpose, a new formula for the estimation of the rock load (support pressure) is recommended. Due to its wide-spread acceptance in the field of rock engineering, the Geological Strength Index (GSI) is adopted in support pressure equation. For poor and very poor rock mass where the GSI < 27, the use of Modified-GSI is, instead, recommended. The supporting action is assumed to be provided by rock bolts carrying a total load defined by the rock load height. The mechanism of bolting is assumed to rely on roof arch forming and suspension principle. Integrated with support pressure function, the bolt density parameter is modified in order to provide an optimized bolt pattern for any shape of tunnel. The modified bolt density can also be used in analysis of a reinforced tunnel in terms of Ground Reaction Curve (GRC) in such a way as to evaluate the reinforced rock mass and the tunnel convergence. By doing so, the effectiveness of the bolting pattern is well evaluated. The proposed approach based on GSI is believed to overcome constrains and limitations of existing empirical bolt design methods based on RMR or Q-system, which are doubtful in poor rock mass usage. The applicability of the proposed method is illustrated by the stability analysis and bolt design of a rail-road tunnel in Turkey.  相似文献   
25.
—?We have used micro-earthquake recordings (M= 1.8–4.1) of local events in the distance range of 5–60?km in order to quantify the attenuation and site effects in the vicinity of the Bursa city, Marmara region, Turkey. The data set consists of 120 three-component recorded accelograms from 69 earthquakes, recorded at six stations. Each station is deployed on different geologic units, such as massive limestone, slope deposit and Quaternary young sediments, in the framework of the Marmara Poly-Project.¶In this study a nonparametric inversion method was applied to acceleration records from the Bursa region to estimate source, site and path effects using a two-step inversion. At the first step, we determined attenuation functions by analyzing the distance dependence of the spectral amplitudes and retrieved values of Q s (f) = 46.59f 0.67. At the second step, the corrected S-waves spectral records for the attenuation function, including the geometrical spreading effect, were inverted to separate source and site response for 21 different frequencies selected between 0.5 and ~25?Hz. The near-surface attenuation, κ value, was also estimated by using the model proposed by Anderson and Hough (1984) at each site. We observed that κ0 is smaller for stations located on rock site (I?dιr, SIGD, κ0~0.004) compared to the one that is located on Neogene sediment (Çukurca, SCKR, κ0~0.018).¶Site amplifications from inversion showed that the station located within the Bursa basin, Çukurca (SCKR), is the most important site with about 4.0 amplification value at 1.8?Hz. Demirta? (SDEM) amplifies the spectral amplitudes about 3.0 times at 2.0?Hz, SHMK about 3.5 times between 2.5 and 3.5?Hz and SHMT nearly reaching 3.5 times between 1.5 and 4.0?Hz. However, stations located on the Uluda? Mountain Massif (SKAY and SIGD), which correspond to a deep limestone geological unit, have the smallest amplification, that values between 0.6 and 1.4.  相似文献   
26.
Microearthquake recordings of local events have been used to quantify the site effects in the vicinity of Bursa City, northwest Turkey. Since the city is located near the southwest branch of the western extension of the North Anatolian Fault (NAF) zone, the importance of the seismic hazard in the region becomes progressively more important. The accelerograms of 69 earthquakes that were recorded on different geologic units, massive limestone, slope deposit and Quaternary sediment were analyzed to estimate the response of the recording sites. Site amplification functions were obtained by using three different approaches (standard spectral ratio, SSR; horizontal to vertical, H/V ratio and generalized inversion method, GIM) and the differences between the methods were also evaluated. We found large discrepancies between the SSR and H/V ratio methods, specifically; the former yields almost three times higher amplitudes than those obtained in the latter approach. Station located within the Bursa Quaternary basin (SCKR) is characterized by the largest estimates of the amplification amplitudes (8.0, 4.5 and 4.0 for SSR, H/V ratio and GIM, respectively) in all the three methods. On the other hand, stations located on deep limestone geological unit (SIGD and SKAY) show the least amplification level, ranging between 1.0 and 1.6. Three methods are able to identify resonant frequencies of the sites, although the absolute amplitudes of the amplification function are obtained different from each method.  相似文献   
27.
Geotechnical and Geological Engineering - In this study, extremely highly plastic soil samples were collected from clay deposits in the Akyurt district of Ankara (Turkey), near Esenbo?a...  相似文献   
28.
Little Andaman, the fourth largest island in the Andaman group of islands of India, was severely affected by the December 26, 2004, Indian Ocean tsunami generated by massive earthquake of moment magnitude 9.3 Mw which devastated the Andaman and Nicobar group of islands causing heavy damage to life and property. Due to hostile terrain conditions not much information was available on the extent of inundation and run-up along the island except for Hut Bay region. In order to study the vulnerability of the island to tsunami hazard, the inundation in the island due to the 2004 tsunami was studied using TUNAMI N2 numerical model and ENVISAT ASAR datasets. The extent of inundation derived from the SAR imagery was compared using the RTK-GPS field survey points collected in the Hut Bay regions immediately after the 2004 tsunami. The extent of inundation obtained from SAR images for the entire island was compared with inundation obtained from model. It was observed that the inundation obtained from the model matched well with inundation extent from SAR imagery for nearshore regions, while for low-lying areas and creeks large deviations were observed. In the absence of field datasets, the inundation derived from SAR imagery would be effective in providing ground data to validate the numerical models which can then be run for multiple scenarios for disaster mitigation and planning operation in areas that have hostile terrain conditions.  相似文献   
29.
Spectral information for wind-waves in the Black Sea is extremely limited. Knowledge on spectral characteristics of wind-waves would contribute to scientific, engineering, and operational coastal and marine activities in the Black Sea, and would allow a better understanding of the nature of the waves occurring in this enclosed basin. Frequency spectra obtained from the directional buoys deployed offshore Sinop and Hopa in Turkey, and Gelendzhik in Russia were utilized as the three sets of data to investigate characteristics of wind-waves frequency spectra for the Eastern Black Sea. Records were firstly analyzed to identify them as uni-modal or multi-modal spectra. Single-peaked spectra were then identified as belonging to fully arisen or developing sea states. Parameters of the JONSWAP and PM model spectra were estimated for the corresponding sea state by using a least square error method. Finally, the records of developing seas were further analyzed to select the ones belonging to stable wind conditions. ECMWF analysis wind fields were utilized as the wind information corresponding to the wave records. Fetch dependencies of non-dimensional spectral variables (variance and peak frequency) and α parameter of the JONSWAP model spectrum were investigated for this data sub-set.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号