首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   1篇
大气科学   9篇
地球物理   13篇
地质学   32篇
海洋学   9篇
天文学   89篇
自然地理   6篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   6篇
  2011年   2篇
  2010年   2篇
  2009年   7篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   7篇
  2004年   9篇
  2003年   5篇
  2002年   6篇
  2001年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   4篇
  1994年   8篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1990年   1篇
  1989年   9篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
31.
The results of experimental investigations into the action of polydispersion salt powders on model cloud media are presented. The results of experiments show a considerable positive effect of the modification of convective clouds by salt powders in order to obtain additional precipitation. The introduction of polydispersion salt powder into a forming cloud medium leads to the appearance of large cloud droplets and to the droplet-spectrum broadening. This result is a positive factor for the stimulation of coagulation processes and further precipitation formation. No “overseeding” phenomenon (when, instead of the enlargement of droplets, their sizes decrease and the concentration of cloud droplets increases) is observed at rather high mass concentrations of the introduced powder.  相似文献   
32.
Segal  Ehud  Negev  Maya  Feitelson  Eran  Zaychik  Danielle 《Natural Hazards》2017,89(1):497-519
Natural Hazards - Collapse of residential buildings is the major cause of death during earthquakes. Seismic retrofitting of residential buildings is a cost-effective way to reduce injury and death....  相似文献   
33.
Seagrass beds have declined in Chesapeake Bay, USA as well as worldwide over the past century. Increased seston concentrations, which decrease light penetration, are likely one of the main causes of the decline in Chesapeake Bay. It has been hypothesized that dense populations of suspension-feeding bivalves, such as eastern oysters (Crassostrea virginica), may filter sufficient seston from the water to reduce light attenuation and enhance seagrass growth. Furthermore, eastern oyster populations can form large three-dimensional reef-like structures that may act like breakwaters by attenuating waves, thus decreasing sediment resuspension. We developed a quasi-three-dimensional Seagrass-Waves-Oysters-Light-Seston (SWOLS) model to investigate whether oyster reefs and breakwaters could improve seagrass growth by reducing seston concentrations. Seagrass growth potential (SGP), a parameter controlled by resuspension-induced turbidity, was calculated in simulations in which wave height, oyster abundance, and reef/breakwater configuration were varied. Wave height was the dominant factor influencing SGP, with higher waves increasing sediment resuspension and decreasing SGP. Submerged breakwaters parallel with the shoreline improved SGP in the presence of 0.2 and 0.4 m waves when sediment resuspension was dominated by wave action, while submerged groins perpendicular to the shoreline improved SGP under lower wave heights (0.05 and 0.1 m) when resuspension was dominated by along-shore tidal currents. Oyster-feeding activity did not affect SGP, due to the oysters’ distance from the seagrass bed and reduced oyster filtration rates under either low or high sediment concentrations. Although the current implementation of the SWOLS model has simplified geometry, the model does demonstrate that the interaction between oyster filtration and along-shore circulation, and between man-made structures and wave heights, should be considered when managing seagrass habitats, planning seagrass restoration projects, and choosing the most suitable methods to protect shorelines from erosion.  相似文献   
34.
Zipper reconnection has been proposed as a mechanism for creating most of the twist in the flux tubes that are present prior to eruptive flares and coronal mass ejections. We have conducted a first numerical experiment on this new regime of reconnection, where two initially untwisted parallel flux tubes are sheared and reconnected to form a large flux rope. We describe the properties of this experiment, including the linkage of magnetic flux between concentrated flux sources at the base of the simulation, the twist of the newly formed flux rope, and the conversion of mutual magnetic helicity in the sheared pre-reconnection state into the self-helicity of the newly formed flux rope.  相似文献   
35.
Preface     
  相似文献   
36.
37.
Issues posed by global environmental change can be viewed as the problem of the commons on a larger geographic scale. A framework for analysing how geographic scale affects governments' ability to manage environmental problems is suggested here. It is based on interactions between four dimensions: production-consumption relationships; distribution of the benefits and costs of various activities; level of administrative control; and spatial scale of individuals' attachment to place. Global environmental problems can be viewed as a case where benefits from polluting activities are spatially concentrated relative to costs. The difficulty in addressing such problems stems from the discrepancy in geographic scale between adverse impacts and level of administrative control. The possibility of adapting institutional structures to match the scale of the problems is examined, in light of the increasing spatial scale of production-consumption relationships in the post-industrial world and the growing demand for local control across the globe. The geographic scale of ideological attachment to place is identified as an important variable in determining the ability to respond to large-scale environmental problems.  相似文献   
38.
An energy method is used to determine a condition for local instability of field lines in magnetohydrostatic equilibrium which are rooted in the photosphere. The particular equilibrium studied is isothermal and two-dimensional and may model a coronal arcade of loops where variations along the axis of the arcade are weak enough to be ignorable. If line tying conditions are modelled by perturbations that vanish on the photosphere, then, when the field is unsheared, the condition for stability is necessary and sufficient. However, when the axial field component is non-zero, so that the field is sheared, the stability condition is only sufficient.It is found that when < 0.34 the equilibrium is stable. When = 0.34 a magnetic neutral line appears at the photosphere and it is marginally stable. When > 0.34 a magnetic island is present and all the field lines inside the island are unstable as well as some beyond it. As increases, the size of the island and the extent of unstable field lines increase. The effect of the instability is likely to be to create small-scale filamentation in the solar corona and to enhance the global transport coefficients.  相似文献   
39.
The velocity of sound in water varies nonlinearly with depth in temperate and tropical ocean basins, limiting the accuracy of representing water velocity with a single average value. A seventh-order polynomial provides an empirical model for converting seismic travel time to water depth in the northwest Gulf of Mexico. This method works best for the continental slope where relief can vary markedly over salt structures, whereas application on the shelf is limited by local and seasonal variations in water velocity. Calculated depths may differ from those of other techniques because of difficulties interpreting competent water bottom.  相似文献   
40.
A four-component ecosystem model of biological activity in the Arabian Sea   总被引:1,自引:0,他引:1  
A coupled, physical-biological model is used to study the processes that determine the annual cycle of biological activity in the Arabian Sea. The physical model is a system with a surface mixed layer imbedded in the upper layer, and fluid is allowed to move between layers via entrainment, detrainment and mixing processes. The biological model consists of a set of advective-diffusive equations in each layer that determine the nitrogen concentrations in four compartments: nutrients, phytoplankton, zooplankton and detritus. Coupling is provided by the horizontal-velocity, layer-thickness, entrainment and detrainment fields from the physical solution. Surface forcing fields (such as wind stress and photosynthetically active radiation) are derived from monthly climatological data, and the source of nitrogen for the system is upward diffusion of nutrients from the deep ocean into the lower layer. Our main-run solution compares favorably with observed physical and biological fields; in particular, it is able to simulate all the prominent phytoplankton blooms visible in the CZCS data. Three bloom types develop in response to the physical processes of upwelling, detrainment and entrainment. Upwelling blooms are strong, long-lasting events that continue as long as the upwelling persists. They occur during the Southwest Monsoon off Somalia, Oman and India as a result of coastal alongshore winds, and at the mouth of the Gulf of Aden through Ekman pumping. Detrainment blooms are intense, short-lived events that develop when the mixed layer thins abruptly, thereby quickly increasing the depth-averaged light intensity available for phytoplankton growth. They occur during the fall in the central Arabian Sea, and during the spring throughout most of the basin. In contrast to the other bloom types, entrainment blooms are weak because entrainment steadily thickens the mixed layer, which in turn decreases the depth-averaged light intensity. There is an entrainment bloom in the central Arabian Sea during June in the solution, but it is not apparent in the CZCS data. Bloom dynamics are isolated in a suite of diagnostic calculations and test solutions. Some results from these analyses are the following. Entrainment is the primary nutrient source for the offshore bloom in the central Arabian Sea, but advection and recycling also contribute. The ultimate cause for the decay of the solution's spring (and fall) blooms is nutrient deprivation, but their rapid initial decay results from grazing and self shading. Zooplankton grazing is always an essential process, limiting phytoplankton concentrations during both bloom and oligotrophic periods. Detrital remineralization is also important: in a test solution without remineralization, nutrient levels drop markedly in every layer of the model and all blooms are severely weakened. Senescence, however, has little effect: in a test solution without senescence, its lack is almost completely compensated for by increased grazing. Finally, the model's detrainment blooms are too brief and intense in comparison to the CZCS data; this difference cannot be removed by altering biological parameters, which suggests that phytoplankton growth in the model is more sensitive to mixed-layer thickness than it is in the real ocean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号