首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   22篇
  国内免费   8篇
测绘学   6篇
大气科学   26篇
地球物理   70篇
地质学   181篇
海洋学   20篇
天文学   56篇
综合类   3篇
自然地理   67篇
  2024年   1篇
  2023年   3篇
  2022年   11篇
  2021年   15篇
  2020年   19篇
  2019年   14篇
  2018年   12篇
  2017年   17篇
  2016年   22篇
  2015年   17篇
  2014年   15篇
  2013年   31篇
  2012年   25篇
  2011年   36篇
  2010年   21篇
  2009年   18篇
  2008年   27篇
  2007年   11篇
  2006年   17篇
  2005年   14篇
  2004年   14篇
  2003年   7篇
  2002年   11篇
  2001年   8篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1983年   2篇
  1980年   1篇
  1976年   1篇
  1975年   2篇
  1973年   3篇
  1969年   1篇
  1962年   1篇
排序方式: 共有429条查询结果,搜索用时 15 毫秒
111.
Water resources in northern Cameroon have continuously been reducing over the past years. Many studies have suggested two principal causes: (1) human activities such as poor farming practices, unsustainable use of water resources, increased demand of water, deforestation, land-use change, etc., (2) human-induced climate change. Northern Cameroon in this study includes: the Adamawa, North and Far North regions located closer to the Sahel regions of Africa. These regions are already water stressed because of their location and any further change in climate with rising temperature would impact water resource either positively or negatively. Time series analysis and a 12-month standardized precipitation index (SPI12) with digital data between 1957 and 2006 were used to investigate the variation of water resources in northern Cameroon. Results obtained varies between the different regions with an increased annual trend in temperature and precipitation for Ngaoundere (Adamawa region) and Garoua (north region), whereas Maroua (far north region) had a decreased annual trend in both precipitation and temperature. Further variability results obtained from a SPI12 show that wetter period out number drought period in all three regions. The study concluded that water resources vary with the changing climatic condition and the severity of the impact varies from region to region. Furthermore, water deficiency in northern Cameroon might not be due to climate change. The reasons might be a combination of poor water management and other factors such population growth, the environmental condition, etc.  相似文献   
112.
Natural Hazards - Acknowledging the devastating consequences of past earthquakes, current research efforts focus on the development of tools for assessing and controlling the risk and losses...  相似文献   
113.
The interannual variability of the South Pacific Convergence Zone (SPCZ) and its influence on tropical cyclone (TC) genesis in the South Pacific are investigated using observations and ERA40 reanalysis over the 1979?C2002 period. In austral summer, the SPCZ displays four typical structures at interannual timescales. The first three are characterized by a diagonal orientation of the SPCZ and account for 85% of the summer seasons. One is close to climatology and the other two exhibit a 3° northward or southward departure from the SPCZ climatological position. In contrast, the fourth one, that only encompasses three austral summer seasons (the extreme 1982/1983 and 1997/1998 El Ni?o events and the moderate 1991/1992 El Ni?o event), displays very peculiar behaviour where the SPCZ largely departs from its climatological position and is zonally oriented. Variability of the western/central Pacific equatorial sea surface temperature (SST) is shown to modulate moisture transport south of the equator, thereby strongly constraining the location of the SPCZ. The SPCZ location is also shown to strongly modulate the atmospheric circulation variability in the South Pacific with specific patterns for each class. However, independently of its wide year-to-year excursions, the SPCZ is always collocated with the zero relative vorticity at low levels while the maximum vorticity axis lies 6° to the south of the SPCZ position. This coherent atmospheric organisation in the SPCZ region is shown to constrain tropical cyclogenesis to occur preferentially within 10° south of the SPCZ location as this region combines all the large-scale atmospheric conditions that favour the breeding of TCs. This analysis also reveals that cyclogenesis in the central Pacific (in the vicinity of French Polynesia) only occurs when the SPCZ displays a zonal orientation while this observation was previously attributed to El Ni?o years in general. Different characteristics of El Ni?o Southern Oscillation (ENSO)-related Pacific equatorial warming are shown to impact differently on the SPCZ position, suggesting that for regional scales, such as the South Pacific, the SPCZ classification is more appropriate than a simple ENSO index to characterize TC interannual variability. These findings suggest that forecasting the strength of El Ni?o through SST variations in the eastern Pacific may not be sufficient to accurately predict cyclogenesis in the South Pacific, especially east of the dateline.  相似文献   
114.
Natural Resources Research - Geochemical anomalies are commonly separated into different geochemical anomaly levels based on one or more thresholds. However, this practice may cause some important...  相似文献   
115.
The Deep Impact mission succeeded in excavating inner materials from the nucleus of Comet 9P/Tempel 1 on 2005 July 04 (at 05:52 UT). Comet 9P/Tempel 1 is one of Jupiter family short period comets, which might originate in the Kuiper belt region in the solar nebula. In order to characterize the comet and to support the mission from the ground-based observatory, optical high-dispersion spectroscopic observations were carried out with the echelle spectrograph (UVES) mounted on the 8-m telescope VLT (UT2) before and after the Deep Impact event. Ortho-to-para abundance ratios (OPRs) of cometary ammonia were determined from the NH2 emission spectra. The OPRs of ammonia on July 3.996 UT and 4.997 UT were derived to be 1.28±0.07 (nuclear spin temperature: Tspin=24±2 K) and 1.26±0.08 (Tspin=25±2 K), respectively. There is no significant change between before and after the impact. Actually, most materials ejected from the impact site could have moved away from the nucleus on July 4.997 UT, about 17 h after the impact. However, a small fraction of the ejected materials might remain in the slit of UVES instrument at that time because an excess of about 20% in the NH2 emission flux is observed above the normal activity level was found [Manfroid, J., Hutsemékers, D., Jehin, E., Cochran, A.L., Arpigny, C., Jackson, W.M., Meech, K.J., Schulz, R., Zucconi, J.-M., 2007. Icarus. This issue]. If the excess of NH2 on July 04.997 UT was produced from icy materials excavated by the Deep Impact, then an upper-limit of the ammonia OPR would be 1.75 (Tspin>17 K) for those materials. On the other hand, the OPR of ammonia produced from the quiescent sources was similar to that of the Oort cloud comets observed so far. This fact may imply that physical conditions where cometary ices formed were similar between Comet 9P/Tempel 1 and the Oort cloud comets.  相似文献   
116.
117.
118.
Over the last decade it has become apparent that Li isotopes may be a good proxy to trace silicate weathering. However, the exact mechanisms which drive the behaviour of Li isotopes in surface environments are not totally understood and there is a need to better calibrate and characterize this proxy. In this study, we analysed the Li concentrations and isotopic compositions in the various surface reservoirs (soils, rocks, waters and plants) of a small forested granitic catchment located in the Vosges Mountains (Strengbach catchment, France, OHGE http://ohge.u-strasbg.fr). Li fluxes were calculated in both soil profiles and at the basin scale and it was found that even in this forested basin, atmospheric inputs and litter fall represented a minor flux compared to input derived from the weathering of rocks and soil minerals (which together represent a minimum of 70% of dissolved Li). Li isotope ratios in soil pore waters show large depth dependent variations. Average dissolved δ7Li decreases from −1.1‰ to −14.4‰ between 0 and −30 cm, but is +30.7‰ at −60 cm. This range of Li isotopic compositions is very large and it encompasses almost the entire range of terrestrial Li isotope compositions that have been previously reported. We interpret these variations to result from both the dissolution and precipitation of secondary phases. Large isotopic variations were also measured in the springs and stream waters, with δ7Li varying from +5.3‰ to +19.6‰. δ7Li increases from the top to the bottom of the basin and also covaries with discharge at the outlet. These variations are interpreted to reflect isotopic fractionations occurring during secondary phase precipitation along the water pathway through the rocks. We suggest that the dissolved δ7Li increases with increasing residence time of waters through the rocks, and so with increasing time of interaction between waters and solids. A dissolution precipitation model was used to fit the dissolved Li isotopic compositions. It was found that the isotopic compositions of springs and stream waters are explicable by an isotopic fractionation of −5‰ to −14‰ (best fit −10.8‰), in agreement with Li incorporation into clay. In soil solutions, it was found that isotopic fractionation during secondary precipitation is larger (at least −23‰), suggesting a major role for different secondary phases, such as iron oxides that maybe incorporate Li with a higher isotope fractionation.  相似文献   
119.
Hybrid depositional systems are created by the interaction of two or more hydrodynamic processes that control facies distribution and their characteristics in terms of sedimentary structures and depositional geometry. The interaction of wave and tide both in the geological sedimentary record and modern environments has been rarely described in the literature. Mixed coastal environments are identified by the evidence of wave and tidal structures and are well identified in nearshore environments, while their recognition in lower shoreface–offshore environments lacks direct information from modern settings. Detailed field analyses of 10 stratigraphic sections of the Lower Ordovician succession (Fezouata and Zini formations; Anti‐Atlas, Morocco) have allowed the definition of 14 facies, all grouped in four facies zones belonging to a storm‐dominated, wave‐dominated sedimentary siliciclastic system characterized by symmetrical ripples of various scales. Peculiar sedimentary organization and sedimentary structures are observed: (i) cyclical changes in size of sedimentary structures under fair‐weather or storm‐weather conditions; (ii) decimetre‐deep erosional surfaces in swaley cross‐stratifications; (iii) deep internal erosion within storm deposits; (iv) discontinuous sandstone layers in most depositional environments, and common deposition of sandstones with a limited lateral extension, interpreted to indicate that deposition at all scales (metric to kilometric) is discontinuous; (v) combined flow–oscillation ripples showing aggrading–prograding internal structures alternating with purely aggrading wave ripples; and (vi) foreshore environments characterized by alternating phases of deposition of parallel stratifications, small‐scale and large‐scale ripples and tens of metres‐wide reactivation surfaces. These characteristics of deposition suggest that wave intensity during storm‐weather or fair‐weather conditions was continuously modulated by another controlling factor of the sedimentation: the tide. However, tidal structures are not recognized, because they were probably not preserved due to dominant action of storms and waves. A model of deposition is provided for this wave‐dominated, tide‐modulated sedimentary system recording proximal offshore to intertidal–foreshore environments, but lacking diagnostic tidal structures.  相似文献   
120.
This paper examines the possibility of applying a homogenization procedure to analyze the convergence of a tunnel reinforced by bolts, regarded as periodically distributed linear inclusions. Owing to the fact that a classical homogenization method fails to account for the interactions prevailing between the bolts and the surrounding ground and thus tends to significantly overestimate the reinforcement effect in terms of convergence reduction, a so‐called multiphase model is presented and developed, aimed at improving the classical homogenization method. Indeed, according to this model, the bolt‐reinforced ground is represented at the macroscopic scale as the superposition of two mutually interacting continuous phases, describing the ground and the reinforcement network, respectively. It is shown that such a multiphase approach can be interpreted as an extension of the homogenization procedure, thus making it possible to capture the ground–reinforcement interaction in a proper way, provided the constitutive parameters of the model and notably those relating to the interaction law can be identified from the reinforced ground characteristics. The numerical implementation of this model in a finite element method‐based computer code is then carried out, and a first illustrative application is finally presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号