首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   7篇
测绘学   2篇
大气科学   5篇
地球物理   20篇
地质学   22篇
海洋学   16篇
天文学   5篇
自然地理   5篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   3篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   4篇
  2004年   4篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   4篇
  1992年   1篇
  1989年   1篇
  1986年   3篇
  1984年   1篇
  1960年   1篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
61.
Plio-Pleistocene deposits of the Lower Colorado River (LCR) and tributary alluvial fans emanating from the Black Mountains near Golden Shores, Arizona record six cycles of Late Cenozoic aggradation and incision of the LCR and its adjacent alluvial fans. Cosmogenic 3He (3Hec) ages of basalt boulders on fan terraces yield age ranges of: 3.3–2.2 Ma, 2.2–1.1 Ma, 1.1 Ma to 110 ka, < 350 ka, < 150 ka, and < 63 ka. T1 and Q1 fans are especially significant, because they overlie Bullhead Alluvium, i.e. the first alluvial deposit of the LCR since its inception ca. 4.2 Ma. 3Hec data suggest that the LCR began downcutting into the Bullhead Alluvium as early as 3.3 Ma and as late as 2.2 Ma. Younger Q2a to Q4 fans very broadly correlate in number and age with alluvial terraces elsewhere in the southwestern USA. Large uncertainties in 3Hec ages preclude a temporal link between the genesis of the Black Mountain fans and specific climate transitions. Fan-terrace morphology and the absence of significant Plio-Quaternary faulting in the area, however, indicate regional, episodic increases in sediment supply, and that climate change has possibly played a role in Late Cenozoic piedmont and valley-floor aggradation in the LCR valley.  相似文献   
62.
Several classes of cosmic objects, such as Young Stellar Objects, Active Galactic Nuclei, Micro-Quasars, Pulsars and probably Gamma Ray Bursts, display powerful winds and jets; for some of them the flow is even ultrarelativistic. For all these classes of objects, the magnetic field is supposed to play a major role in launching and collimating the flow, together with the angular momentum transfer. It probably plays an important role for the turbulent transport in accretion disks also. Regarding the high energy radiation of relativistic jets and the cosmic ray generation, the magnetic field is of course the acceleration agent and could produce the Ultra High Energy Cosmic Rays in some extragalactic objects. The main growth points of these topics are presented, mostly in the case of black hole environments; the case of Young Stellar Objects is more complicated because of the interaction of the stellar magnetosphere with the accretion disk, and the models for this interaction are not yet founded on a reliable theory.  相似文献   
63.
Benzo[a]pyrene (BaP), a procarcinogenic polycyclic aromatic hydrocarbon (PAH), is bioactivated to BaP diol-epoxides (BPDEs) that can form adducts with DNA and blood proteins. We report here for the first time the in vivo formation of adducts between BPDE and plasma albumin (Alb) from two fish species experimentally exposed to BaP. Brook trout (Salvelinus fontinalis) received either a single i.p. dose (10 mg/kg) or two separate i.p. doses (25 mg/kg; 7 days apart) of BaP, and blood was collected 2 (single exposure) or 3 (multiple exposure) days post-treatment. Arctic charr (Salvelinus alpinus) received 10 i.p. doses (3 mg/kg; a single dose every 6 days), and blood was collected 2 days after the second, sixth, and 10th injections. BPDE-Alb adducts were measured by an improved HPLC/fluorescence method developed to detect and quantify BaP-tetrols released after acid hydrolysis of adducted Alb. HPLC/fluorescence chromatograms of Alb from BaP-treated fish revealed only BaP-tetrol I-1, thus indicating the formation of adducts exclusively via the (+)-anti-BPDE metabolite. Levels of (+)-anti-BPDE-Alb adduct ranged from 0.68 to 19.6 ng of tetrol I-1 per gram of Alb. Notably, adduct level was not related to BaP dose and there was no accumulation of adducts with repeated exposure, which may indicate a very short half-life (< 2 days) of plasma Alb in fish. The data suggest that BPDE-Alb adducts in fish could be useful as a non-destructive biomarker of recent exposure to bioactivated BaP.  相似文献   
64.
65.
Hot spots similar to those in the radio galaxy Cygnus A can be explained by the strong shock produced by a supersonic but classical jet \(\left( {u_{jet}< c/\sqrt 3 } \right)\) . The high integrated radio luminosity (L?2×1044 erg s?1) and the strength of mean magnetic field (B?2×10?4 G) suggest the hot spots are the downstream flow of a very strong shock which generates the ultrarelativistic electrons of energy ?≥20 MeV. The fully-developed subsonic turbulence amplifies the magnetic field of the jet up to 1.6×10?4 G by the dynamo effect. If we assume that the post-shock pressure is dominated by relativistic particles, the ratio between the magnetic energy density to the energy density in relativistic particles is found to be ?2×10?2, showing that the generally accepted hypothesis of equipartition is not valid for hot spots. The current analysis allows the determination of physical parameters inside hot spots. It is found that:
  1. The velocity of the upstream flow in the frame of reference of the shock isu 1?0.2c. Radio observations indicate that the velocity of separation of hot spots isu sep?0.05c, so that the velocity of the jet isu jet=u 1+u sep?0.25c.
  2. The density of the thermal electrons inside the hot spot isn 2?5×10?3 e ? cm?3 and the mass ejected per year to power the hot spot is ?4M 0yr?1.
  3. The relativistic electron density is less than 20% of the thermal electron density inside the hot spot and the spectrum is a power law which continues to energies as low as 30 MeV.
  4. The energy density of relativistic protons is lower than the energy density of relativistic electrons unlike the situation for cosmic rays in the Galaxy.
  相似文献   
66.
67.
The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4–5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the change to increasing obliquity and intracontinental transpression towards the south. In this paper, we provide evidence that faulting with a significant strike-slip component is widespread along the entire 1000 km margin. Subduction of the northeastern scrap of the Hikurangi Plateau is marked by an offset in the Kermadec Trench and adjacent margin, and by a major NW-trending tear fault in the scarp. To the south, the southern Kermadec Trench is devoid of turbidite fill and the adjacent margin is characterized by an up to 1200 m high scarp that locally separates apparent clockwise rotated blocks on the upper slope from strike-slip faults and mass wasting on the lower slope. The northern Hikurangi Trough has at least 1 km of trench-fill but its adjacent margin is characterized by tectonic erosion. The toe of the margin is indented by 10–25 km for more than 200 km, and this is inferred to be the result of repeated impacts of the large seamounts that are abundant on the northern Hikurangi Plateau. The two most recent impacts have left major indentations in the margin. The central Hikurangi margin is characterized by development of a wide accretionary wedge on the lower slope, and by transpression of presubduction passive margin sediments on the upper slope. Shortening across the wedge together with a component of strike-slip motion on the upper slope supports an interpretation of some strain partitioning. The southern Hikurangi margin is a narrow, mainly compressive belt along a very oblique, apparently locked subduction zone.  相似文献   
68.
Swath bathymetric, sonar imagery and seismic reflection data collected during the SOPACMAPS cruise Leg 3 over segments of the Vitiaz Trench Lineament and adjacent areas provide new insights on the geometry and the stuctural evolution of this seismically inactive lineament. The Vitiaz Trench Lineament, although largely unknown, is one of the most important tectonic feature in the SW Pacific because it separates the Cretaceous crust of the Pacific Plate to the north from the Cenozoic lithosphere of the North Fiji and Lau Basins to the south. The lineament is considered to be the convergent plate boundary between the Pacific and Australian Plates during midde to late Tertiary time when the Vitiaz Arc was a continuous east-facing are from the Tonga to the Solomon Islands before the development of the North Fiji and Lau Basins. Progressive reversal and cessation of subduction from west to east in the Late Miocene-Lower Plioene have been also proposed. However, precise structures and age of initiation and cessation of deformation along the Vitiaz Trench Lineament are unknown.The lineament consists of the Vitiaz Trench and three discontinuous and elongated troughs (Alexa, Rotuma and Horne Troughs) which connect the Vitiaz Trench to the northern end of the Tonga Trench. Our survey of the Alexa and Rotuma Troughs reveals that the lineament is composed of a series of WNW-ESE and ENE-WSW trending segments in front of large volcanic massifs belonging to the Melanesian Border Plateau, a WNW trending volcanic belt of seamounts and ridges on Pacific crust. The Plateau and Pacific plate lying immediately north of the lineament have been affected by intense normal faulting, collapse, and volcanism as evidenced by a series of tilted blocks, grabens, horsts and ridges trending N 120° to N100° and N60°–70°. This tectonism includes several normal faulting episodes, the latest being very recent and possibly still active. The trend of the fault scarps and volcanic ridges parallels the different segments of the Vitiaz Trench Lineament, suggesting that tectonics and volcanism are related to crustal motion along the lineament.Although the superficial observed features are mainly extensional, they are interpreted as the result of shortening along the Vitiaz Trench Lineament. The fabric north of the lineament would result from subduction-induced normal faulting on the outer wall of the trench and the zig-zag geometry of the Vitiaz Trench Lineament might be due to collision of large volcanic edifices of the Melanesian Border Plateau with the trench, provoking trench segmentation along left-lateral ENE-WSW trending transform zones. The newly acquired bathymetric and seismic data suggest that crustal motion (tectonism associated with volcanism) continued up to recent times along the Vitiaz Trench Lineament and was active during the development of the North Fiji Basin.  相似文献   
69.
New bathymetric and geophysical data were collected in the region east of the island of Malaita during the SOPACMAPS II cruise of the French research vessel L'ATALANTE. This region, part of the Malaita Anticlinorium was interpreted as a piece of oceanic crust from the Ontong Java Plateau obducted over the old Solomon Islands arc during collision between the Pacific and Australian plates. It has been generally accepted that convergent motion between the Australia and Pacific plates since the Late Miocene was absorbed exclusively along the San Cristobal trench, southwest of the Solomon Islands Arc.Bathymetry, imagery, and geophysical data (magnetism, gravity, seismic) acquired during the SOPACMAPS II survey allow us to classify the successive parallel ridges mapped within the region as being recent volcanic, oceanic crust, or deformed sedimentary ridges.Seismic profiling provides evidence of successive compressive events along the Malaita margin caused by the relative motion between the Solomon Islands and the Pacific plate. The main phase of convergence probably occurred during Oligocene-early Miocene time, but some relative motion between the two domains are still being absorbed along the East Malaita boundary. The existence of active faulting in the sedimentary cover throughout the region and the present-day deformation of the outer sedimentary ridge is a good illustration of this phenomenon.  相似文献   
70.
Two general approaches have been applied to understanding the fractal structure of fluvial topography: (1) deterministic, process-based models, and (2) stochastic partial differential equations (PDE). Deterministic models reproduce the fractal behavior of fluvial topography but have two limitations: they often underestimate the amount of lateral valley and ridge migration that occurs in nature, and the complexity has made it difficult to identify the precise origin of fractal behavior in fluvial landscapes. The simplicity of stochastic PDE models has made them useful for investigating fractal behavior, but they incorrectly suggest that fractal behavior is only possible with stochastic forcing. In this paper I investigate whether simplified, deterministic PDE models of landform evolution also exhibit fractal behavior and other features of complexity (i.e. deterministic chaos). These models are based on the KPZ equation, well known in the physics literature. This equation combines diffusion (i.e. hillslope processes) and nonlinear advection (i.e. bedrock or alluvial channel incision). Two models are considered: (1) a deterministic model with uniform erodibility and random initial topography, and (2) a deterministic model with random erodibility and uniform initial topography. Results illustrate that both of these deterministic models exhibit fractal behavior and deterministic chaos. In this context, chaotic behavior means that valley and ridge migration and nonlinear amplification of small perturbations in these models prevent an ideal steady state landscape from ever developing in the large-system limit. These results suggest that fractal structure and deterministic chaos are intrinsic features of the evolution of fluvial landforms, and that these features result from an inverse cascade of energy from small to large wavelengths in drainage basins. This inverse cascade differs from the direct cascade of three-dimensional turbulence in which energy flows from large to small wavelengths.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号