首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   2篇
测绘学   1篇
地球物理   58篇
地质学   14篇
海洋学   4篇
天文学   3篇
自然地理   19篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1988年   4篇
  1987年   4篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
  1968年   2篇
  1965年   1篇
  1952年   1篇
  1951年   1篇
  1949年   2篇
  1932年   1篇
  1926年   1篇
  1922年   2篇
  1920年   1篇
排序方式: 共有99条查询结果,搜索用时 15 毫秒
91.
In the hours following the 2011 Honshu event, and as part of tsunami warning procedures at the Laboratoire de Géophysique in Papeete, Tahiti, the seismic source of the event was analyzed using a number of real-time procedures. The ultra-long period mantle magnitude algorithm suggests a static moment of 4.1 × 1029 dyn cm, not significantly different from the National Earthquake Information Center (NEIC) value obtained by W-phase inversion. The slowness parameter, $\Uptheta = -5.65, $ is slightly deficient, but characteristic of other large subduction events such as Nias (2005) or Peru (2001); it remains significantly larger than for slow earthquakes such as Sumatra (2004) or Mentawai (2010). Similarly, the duration of high-frequency (2–4 Hz) P waves in relation to seismic moment or estimated energy, fails to document any slowness in the seismic source. These results were confirmed in the ensuing weeks by the analysis of the lowest-frequency spheroidal modes of the Earth. A dataset of 117 fits for eight modes (including the gravest one, 0 S 2, and the breathing mode, 0 S 0) yields a remarkably flat spectrum, with an average moment of 3.5 × 1029 dyn cm (*/1.07). This behavior of the Tohoku earthquake explains the generally successful real-time modeling of its teleseismic tsunami, based on available seismic source scaling laws. On the other hand, it confirms the dichotomy, among mega-quakes (M 0 > 1029 dyn cm) between regular events (Nias, 2005; Chile, 2010; Sendai, 2011) and slow ones (Chile, 1960; Alaska, 1964; Sumatra, 2004; and probably Rat Island, 1965), whose origin remains unexplained.  相似文献   
92.
There are ongoing efforts to render conventional biosand filters (BSF) more efficient for safe drinking water provision. One promising option is to amend BSF with a reactive layer containing metallic iron (Fe0). The present communication presents some conceptual options for efficient Fe0‐amended BSF in its fourth generation. It is shown that a second fine‐sand layer should be placed downwards from the Fe0‐reactive layer to capture dissolved iron. This second fine‐sand layer could advantageously contain adsorbing materials (e.g. activated carbons, wooden charcoals). An approach for sizing the Fe0‐reactive layer is suggested based on 3 kg Fe0 per filter. Working with the same Fe0 load will ease comparison of results with different materials and the scaling up of household BSF to large scale community slow sand filters (SSF).  相似文献   
93.
We useP andS times listed in the International Seismological Summary to relocate 23 historical earthquakes (1927–1963) reported as occurring at or below 670 km. In all cases, our relocated hypocenters are shallower than the starting depths; furthermore, all events converge to 691 km or less, with a precision estimated at ±10 km. This study upholds the results of Stark and Frohlich, who had usedpP–P times of post-WWSSN earthquakes to constrain reliable hypocentral depths to no greater than 684 km. In particular, we reject Rothé's claim that a 1963 event in the vicinity of New Guinea occurred at a depth of more than 780 km.  相似文献   
94.
We present a review of the principal methods used for the seismic detection and identification of active underwater volcanism, based on our experience in French Polynesia. In particular, we descrobe the 5-year activity in the Tahiti-Mehetia area, during which more than 32000 earthquakes were detected by the Polynesian network. We discuss the use of the following three types of seismic waves: conventional (mostly body waves), seismic tremor, andT waves propagated in the low-velocity acoustic channel of the ocean. For each of these waves, we discuss the principal characteristics of the signals, their spectral content, the type of information they provide on the activity of the volcano, and the various limitations faced by their use in detection or monitoring of underwater volcanic edifices. We present a review of the principal swarms monitored by the Polynesian network, and discuss their characterization as either volcanic or tectonic.  相似文献   
95.
96.
b
Rayleigh-wave phase velocities are investigated in the period range 17–100 s by the two-station method over several paths covering most of French Polynesia. Our results confirm the validity of theoretical models obtained through regionalization of data pertaining to longer paths. They also exhibit a 2–3.5 per cent anisotropy, with the axis of maximum velocity oriented in the direction of spreading of the plate. Part of this anisotropy is, however, due to the presence of the Tuamotu archipelago; when this is removed, the remaining anisotropy (about 1.5 per cent) correlates with the present direction of spreading, indicating that a relaxation of the anisotropy has taken place since the East Pacific ridge jump. Finally, the presence of the Tuamotu Islands explains anomalous waveshapes for surface waves travelling in their vicinity, due to multipathing through their faster structure.  相似文献   
97.
98.
A pollen record from Puyehue area (40°S; 72°W) in the southern Lake District, Chile, indicates that prior to 13,410 14C yr BP (ca. 16,500–15,200 cal yr BP), cold resistant and hygrophilous vegetation, particularly Nothofagus forest and myricaceous vegetation, covered the area. From ca. 15,000 cal yr BP onward, the forest became increasingly dense. Between 10,010 and 7450 14C yr BP (ca. 11,000–8000 cal yr BP), the expansion of Nothofagus obliqua and the spread of grasses suggests the climate became warmer and semi-arid. Lowland deciduous forest (Nothofagus obliqua, Aextoxicon punctatum, Laurelia sempervirens) and Valdivian rainforest (Nothofagus dombeyi, Eucryphia cordifolia, Caldcluvia paniculata, Aextoxicon punctatum, Laureliopsis philippiana) were abundant. During the next two thousand years, stable warm climatic conditions prevailed, and the diversity of the vegetation increased. From 5760 to 1040 14C yr BP (ca. 6500–900 cal yr BP), the North Patagonian rainforest expanded. The presence of Pilgerodendron/Fitzroya, together with Nothofagus forest, suggests that humid conditions prevailed. During the last millennium, human impact intensified and regional vegetation was disturbed, particularly the lowland deciduous forest and Valdivian rainforest. North-Patagonian and subantartic taxa, such as Podocarpus nubigena, Pilgerodendron/Fitzroya, Nothofagus dombeyi type, Austrocedrus chilensis and Drimys winteri, occupied the low and high-altitude parts of the Cordillera. Five hundred years ago, shrub and grasses expanded in the Nothofagus forest, suggesting that forest became more open under cool–cold, and humid climatic conditions. These conditions prevail to the present day. This is the fourth in a series of eight papers published in this special issue dedicated to the 17,900 year multi-proxy lacustrine record of Lago Puyehue, Chilean Lake District. The papers in this special issue were collected by M. De Batist, N. Fagel, M.-F. Loutre and E. Chapron.  相似文献   
99.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号