首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   2篇
测绘学   1篇
地球物理   58篇
地质学   14篇
海洋学   5篇
天文学   3篇
自然地理   19篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1988年   4篇
  1987年   4篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1969年   1篇
  1968年   2篇
  1965年   1篇
  1952年   1篇
  1951年   1篇
  1949年   2篇
  1932年   1篇
  1926年   1篇
  1922年   2篇
  1920年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
81.
A nonlinear numerical model has been formulated to study the propagation of a monochromatic surface wave. The model is formulated through the vertical integration of the continuity equation and the equations of motion. This model is investigated for wave propagation, velocity distribution, energy propagation and varying Courant, Friedrichs and Lewy's (CFL) condition. The applicability of this model for both shallow- and deep-water wave is also examined. The results and analyses are shown in details. The results obtained from the model are compared with the Stokes third-order wave theory and with the relevant experimental data.  相似文献   
82.
We extend to the case of intermediate and deep earthquakes the mantle magnitude developed for shallow shocks byokal andTalandier (1989). Specifically, from the measurement of the spectral amplitude of Rayleigh waves at a single station, we obtain a mantle magnitude,M m, theoretically related to the seismic moment of the event through $$M_m = \log _{10} M_0 - 20.$$ The computation ofM minvolves two corrections. The distance correction is the same as for shallow shocks. For the purpose of computing the frequency-dependent source correction, we define three depth windows: Intermediate (A) (75 to 200 km); Intermediate (B) (200–400 km) and Deep (over 400 km). In each window, the source correctionC S is modeled by a cubic spline of log10 T. Analysis of a dataset of 200 measurements (mostly from GEOSCOPE stations) shows that the seismic moment of the earthquakes is recovered with a standard deviation of 0.23 units of magnitude, and a mean bias of only 0.14 unit. These figures are basically similar to those for shallow events. Our method successfully recognizes truly large deep events, such as the 1970 Colombia shock, and errors due to the potential misclassification of events into the wrong depth window are minimal.  相似文献   
83.
We have relocated the twenty-eight largest magnitude (4.3M s 7.3) historical (1922–1963) earthquakes of the southeastern Caribbean. We also present new focal mechanisms for seven of these events. The relocations are based on reported ISSP andS arrival times that we analyzed using generalized linear inversion techniques. The new focal mechanisms were constrained by first motionP polarities as reported by the ISS and as picked by us where records were available, and by the polarities and ratios ofSH andsSH, andSV andsSV arrivals that we determined from seismograms. The results of the relocations are commensurate with the distribution of seismicity observed in the recent era: hypocenters are shallow and intermediate in depth (0–200 km), and the events occur almost exclusively in areas known to be currently seismic. The frequent seismic activity in the vicinity of the Paria Peninsula, Venezuela, is clearly a persistent feature of the regional earthquake pattern; intermediate depth earthquakes indicative of subduction beneath the Caribbean plate occur here and along the Lesser Antilles arc. The Grenadines seismic gap is confirmed as an area of low seismic moment release throughout the historical era. Trinidad and the eastern Gulf of Paria were also largely quiescent.The new focal mechanisms, despite being a sparse data set, give significant insight into both subduction processes along the Lesser Antilles arc and into the shallow deformation of the Caribbean-South America plate boundary zone. The largest earthquake to have occurred in this region, the 19 March 1953 event (M m =7.01), is a Lesser Antilles slab deformation event, and another earthquake in this region of the Lesser Antilles is probably a rarely-observed interplate thrust event. Shallow deformation in the plate boundary zone is complex and, near the Paria Penninsula, involves mixed southeastward thrusting and dextral strike-slip on east-striking faults, and secondarily, normal faulting. Bending of the subducting Atlantic-South American plate also seems to generate seisms. The rather high ratio of intraplate deformation to interplate deformation observed along the Lesser Antilles subduction zone in the more recent era seems to have been operative in the historical era as well.  相似文献   
84.
85.
86.
87.
88.
89.
Theoretical seismic properties of the planet Mars are investigated on the basis of the various models which have been proposed for the internal composition of the planet. The latest interpretation of gravity field data (Reasenberg, 1977), assuming a lower value of the moment of inertia, would require a less dense mantle and a larger core than previous models. If Mars is chondritic in composition, the most reasonable models are an incompletely differentiated H-chondrite or a mixture of H-chondrites and carbonaceous chondrites. Seismic profiles, travel times, and free oscillation periods are computed for various models, with the aim of establishing which seismic data is crucial for deciding among the alternatives. A detailed discussion is given of the seismic properties which could—in principle—help answer the following two questions: Is Mars' core liquid or solid? Does Mars have a partially molten asthenosphere in its upper mantle?  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号