首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   7篇
测绘学   5篇
大气科学   7篇
地球物理   30篇
地质学   33篇
海洋学   8篇
天文学   19篇
综合类   4篇
自然地理   7篇
  2024年   1篇
  2023年   1篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   10篇
  2017年   8篇
  2016年   9篇
  2015年   4篇
  2014年   7篇
  2013年   4篇
  2012年   6篇
  2011年   7篇
  2010年   6篇
  2009年   2篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   5篇
  2004年   2篇
  2003年   1篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1992年   1篇
  1984年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
排序方式: 共有113条查询结果,搜索用时 15 毫秒
71.
The Quaternary history of the Capitol Reef area, Utah, is closely linked to the basaltic-andesite boulder deposits that cover much of the landscape. Understanding the age and mode of emplacement of these deposits is crucial to deciphering the Quaternary evolution of this part of the Colorado Plateau. Using cosmogenic 3He exposure age dating, we obtained apparent exposure ages for several key deposits in the Capitol Reef area. Coarse boulder diamicts capping the Johnson Mesa and Carcass Creek Terraces are not associated with the Bull Lake glaciation as previously thought, but were deposited 180±15 to 205±17 ka (minimum age) and are the result of debris flow deposition. Desert pavements on the Johnson Mesa surface give exposure ranging from 97±8 to 159±14 ka and are 34–96 kyears younger than the boulder exposure ages. The offset between the boulder and pavement exposure ages appears to be related to a delay in pavement formation until the penultimate glacial/interglacial transition or periodic burial and exposure of pavement clasts since debris flow deposition. Incision rates for the Capitol Reef reach of the Fremont River calculated from the boulder exposure ages range from 0.40 to 0.43 m kyear−1 (maximum rates) and are some of the highest on the Colorado Plateau.  相似文献   
72.
73.
The Upper Jurassic to Lower Cretaceous platform‐slope to basinal carbonate strata cropping out in Gargano Promontory (southern Italy) are partly dolomitized. Fieldwork and laboratory analyses (petrographic, petrophysical and geochemical) allowed the characterization of the dolomite bodies with respect to their distribution within the carbonate succession, their dimensions, geometries, textural variability, chemical stability, age, porosity, genetic mechanisms and relation with tectonics. The dolomite bodies range from metres to kilometres in size, are fault‐related and fracture‐related, and probably formed during the Early Cretaceous at <500 m burial depths and temperatures <50°C. The proposed dolomitization model relies on mobilization of Early Cretaceous seawater that flowed, downward and then upward, along faults and fractures and was modified in its isotopic composition moving through Triassic and Jurassic strata that underlie the studied dolomitized succession. Despite the numerous cases reported in literature, this study demonstrates that hydrothermal and/or high‐temperature fluids are not necessarily required for fault‐controlled dolomitization. Distribution and geometries of dolomite bodies can be used for palaeotectonic reconstructions, as they partly record the characteristics (size, attitude and kinematics) of the palaeo‐faults, even if not preserved, that controlled dolomitization. In Gargano Promontory, dolomites record Early Cretaceous palaeo‐faults from metres to kilometres long, striking north‐west/south‐east to east/west and characterized by normal to strike‐slip kinematics. Dolomitization increases the matrix porosity by up to 7% and, therefore, can improve the geofluid storage capacity of tight, platform‐slope to basinal limestones. The results have a great significance for characterization of geofluid (for example, hydrocarbons) reservoirs hosted in similar dolomitized carbonate successions. Distribution, size and shapes of reservoir rocks (i.e. dolomite bodies) could be broadly predictable if the characteristics of the palaeo‐fault system present at the time of dolomitization are known.  相似文献   
74.
At ~20 ka bp , lakes Yehuin, Chepelmut and Fagnano constituted a single, large water body in the central part of Isla Grande de Tierra del Fuego (southernmost Patagonia). The evolutionary history of this lake, known as ‘Palaeolago Fueguino’, was probably controlled by the advances, stillstands and retreats of the ‘Fagnano Palaeoglacier’, an outlet glacier that flowed eastward from the Darwin Cordillera ice sheet. A detailed analysis of high-resolution seismic reflection profiles acquired within the three lakes has allowed the identification and correlation of seven unconformities within the lacustrine sedimentary infill, three seismostratigraphic sequences in Lago Fagnano and four in Lago Yehuin. A seismic stratigraphic correlation between these sequences suggests that these basins formerly constituted a single, large lacustrine body. A lake-level curve of the evolutionary stages of each lake, derived from the seismostratigraphic analysis of the sedimentary infill is proposed here, representing a 17.5 ka-long record. It was further integrated with the glacial record of the advances and retreats of the Fagnano Palaeoglacier. This study has implications for interpreting the sedimentary history of lake basins in glaciated mountain ranges.  相似文献   
75.
76.
An estimated 76% of global stream area is occupied by channels with widths above 30 m. Sentinel-2 imagery with resolutions of 10 m could supply information about the composition of river corridors at national and global scales. Fuzzy classification models that infer sub-pixel composition could further be used to compensate for small channel widths imaged at 10 m of spatial resolution. A major challenge to this approach is the acquisition of suitable training data useable in machine learning models that can predict land-cover type information from image radiance values. In this contribution, we present a method which combines unmanned aerial vehicles (UAVs) and Sentinel-2 imagery in order to develop a fuzzy classification approach capable of large-scale investigations. Our approach uses hyperspatial UAV imagery in order to derive high-resolution class information that can be used to train fuzzy classification models for Sentinel-2 data where all bands are super-resolved to a spatial resolution of 10 m. We use a multi-temporal UAV dataset covering an area of 5.25 km2. Using a novel convolutional neural network (CNN) classifier, we predict sub-pixel membership for Sentinel-2 pixels in the fluvial corridor as divided into classes of water, vegetation and dry sediment. Our CNN model can predict fuzzy class memberships with median errors from −5% to +3% and mean absolute errors from 10% to 20%. We also show that our CNN fuzzy predictor can be used to predict crisp classes with accuracies from 95.5% to 99.9%. Finally, we use an example to show how a fuzzy CNN model trained with localized UAV data can be applied to longer channel reaches and detect new vegetation growth. We therefore argue that the novel use of UAVs as field validation tools for freely available satellite data can bridge the scale gap between local and regional fluvial studies. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
77.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   
78.
The development and widespread use of statistical learning models have brought the need for tools that help analysts diagnose, build, and refine those models. In this work, in particular, we focus on interpolation models, which spatially predict the value of a variable based on the values of its neighborhood. Investigating these results spatially or comparing them with other models at different levels of granularity is still a challenge for the analysts trying to understand and refine their models. To deal with that, we propose a visual analytics model-agnostic tool for facilitating the comparison and refinement of spatial models at different levels of granularity using interactive visualization techniques. The tool was built in collaboration with specialists who used it to diagnose and improve a spatial model for predicting residential real estate prices.  相似文献   
79.
Integrated classification maps were produced by combining sediment grain-size and hydrological data (water renewal time, WRT) from two Mediterranean lagoons, Lesina (LL) and Varano (LV), Italy. The geophysical characteristics of the two basins, derived from detailed bathymetric charts, are quite distinct: ~30% of LL (mean depth ~1 m) but only 3% of LV (mean depth ~3 m) is shallower than 1 m. The sediments of both lagoons are mainly composed of mud (~80%). A detailed multivariate analysis of grain-size data by EntropyMax classified the lagoon beds of LL and LV into five sedimentary facies. WRT data, computed by a hydrodynamic model, indicated different hydrological conditions in the two lagoons: LL showed a sharp west–east gradient, with a basin-wide average of ~190 days, whilst LV showed a fairly uniform distribution and a higher basin-wide average (~260 days). The distribution of sedimentary facies and water renewal times were combined in a composite map representing the distribution of environmental patterns. The approach outlined in this study can be used to improve zonation schemes by providing a hydromorphological perspective on transitional and coastal environments.  相似文献   
80.
In Mediterranean coastal catchments, water management for preservation of pine forests and other natural areas faces particular challenges. Limited rainfall, water consumption by vegetation as well as subsidence, drainage and salt water intrusion all play an important role. Traditionally forest and water management are carried out independent of one another and do not consider water budget calculations. We show with this study that is very important to have quantitative information of all the components of the water budget as well as the size of the fresh water lenses in the aquifer to be able to integrate the water- and forest management. We use an integrated hydrologic-ecologic methodology based on easily attainable data to assess the monthly water budget of a coastal catchment, Marina Romea (Ravenna, Italy). We present detailed monthly water table records, rainfall data, drainage data, tree density and tree perimeter and use published sap flow measurements of single pine trees (Pinus Pinea) to quantify the actual transpiration of single pine trees in different periods of the year. Transpiration amounts to 10–30 l per day per tree. These values are confirmed by independent estimates of tree transpiration based on our water budget calculations: 9–34 l/tree/day. Because typically there are so many trees in planted pine forests, the total transpiration rates over the whole watershed take up a large percentage (up to 200 %) of the precipitation. In Marina Romea, four monitoring periods out of twelve, the tree transpiration is larger than precipitation. In nine monitoring periods, drainage in the watershed is larger than precipitation or tree water transpiration. The measurements and calculations show that not much freshwater is left to recharge the fresh water lens underneath Marina Romea. Monthly monitoring of groundwater table elevation and salinity in the pine forest of Marina Romea from March 2007 to February 2008 shows that the groundwater table strongly fluctuates and groundwater salinity is constantly very high (up to 17.7 g/l). Analytical calculations based on the Ghyben Herzberg Dupuit principle suggest that even a small continuous annual recharge of 15 mm could form a 2-m deep freshwater lens in the unconfined aquifer. This freshwater lens is not present in the study area and this is due to the fact that tree water transpiration and drainage take out most of the fresh water coming into the watershed. In catchments like Marina Romea, water consumption by the (natural) vegetation and seasonal differences as well as the fact that fresh water lenses are limited in salty surroundings should be taken into account in water and forest management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号