首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   587篇
  免费   21篇
  国内免费   4篇
测绘学   11篇
大气科学   49篇
地球物理   121篇
地质学   217篇
海洋学   69篇
天文学   68篇
综合类   1篇
自然地理   76篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   12篇
  2019年   7篇
  2018年   19篇
  2017年   19篇
  2016年   26篇
  2015年   16篇
  2014年   21篇
  2013年   46篇
  2012年   24篇
  2011年   43篇
  2010年   33篇
  2009年   30篇
  2008年   36篇
  2007年   30篇
  2006年   17篇
  2005年   16篇
  2004年   26篇
  2003年   26篇
  2002年   21篇
  2001年   12篇
  2000年   8篇
  1999年   9篇
  1998年   7篇
  1997年   9篇
  1996年   7篇
  1995年   8篇
  1994年   4篇
  1993年   7篇
  1992年   7篇
  1991年   4篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   7篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有612条查询结果,搜索用时 15 毫秒
171.
172.
Cyanobacterial carotenoids and diatom remains have been analyzed in recent sediments from the Windermere South Basin (WSB) to study the trophic evolution experienced by the lake. Dates in the top 30 cm were specifically established through radionuclide (210Pb and137Cs) analyses. Diatom stratigraphy shows dominance of the centric diatomsCyclotella comensis andC. radiosa and several benthic taxa in the early postglacial. This indicates oligotrophy in the WSB during that period. This assemblage was replaced by another dominated by the diatomAsterionella formosa in the 1870's, as has been established from the210Pb dating. From that date onwards, the lake underwent a progression towards eutrophy, indicated by the progressive increase inAulacoseira subarctica (c. 1930's),Fragilaria crotonensis (c. 1943), and more recently, of the centricsStephanodiscus parvus (c. 1971) andCyclotella meneghiniana (1988).Carotenoid stratigraphy reveals the differences between different sections of the core. Oscillaxanthin and myxoxanthophyll had very low records in the early and medium parts of the core, but increased fromc. 1950's, showing peaks atc. 1967, 1979 and 1987. Some of these peaks indicated a differential abundance ofOscillatoria, and are matched to those observed directly during the ongoing monitoring of the phytoplankton of the lake.The coincidence between the historic appearance of diatoms associated with nutrient-rich waters and the enhanced carotenoid occurrence suggest a common response to phosphorus enrichment, and that the progressive change towards eutrophy has been accentuated during the last twenty-five years.  相似文献   
173.
The karsted limestone valleys of central Pennsylvania contain two populations of sinkholes. Solution sinkholes occur in the Champlainian limestone units along the margins of the valleys. Solution sinkholes are permanent parts of the landscape and, although a nuisance to construction, do not present other problems. The second population is the suffosional or soil-piping sinkholes These occur on all carbonate rock units including the Beekmantown and Gatesburg dolomites that comprise the two principal carbonate aquifers in the valley. Suffosional sinkholes are the principal land-use hazard. Suffosional sinkholes are transient phonomena. They occur naturally but are exacerbated by runoff modifications that accompany urbanization Suffosional sinkholes are typically 1.5–2.5 m in diameter depending on soil thickness and soil type. The vertical transport of soil to form the void space and soil arch that are the precursors to sinkhole collapse is through solutionally widened fractures and cross-joints and less often through large vertical openings in the bedrock. The limited solution development on the dolomite bedrock combined with soil thickness, seldom greater than 2 m, limits the size of the sinkholes. All aspects of suffosional sinkhole development are shallow processes: transport, piping, void and arch formation, and subsequent collapse take place usually less than 10 m below the land surface Factors exacerbating sinkhole development include pavement, street, and roof runoff which accelerates soil transport Such seemingly minor activities as replacing high grass and brush with mowed grass is observed to accelerate sinkhole development. Dewatering of the aquifer is not a major factor in this region  相似文献   
174.
A simple model for mid-plate swells is that of convection in a fluid which has a low viscosity layer lying between a rigid bed and a constant viscosity region. Finite element calculations have been used to determine the effects of the viscosity contrast, the layer thickness and the Rayleigh number on the flow and on the perceived compensation mechanism for the resulting topographic swell. As the viscosity decreases in the low viscosity zone, the effective local Rayleigh number for the top boundary layer of the convecting cell increases. Also, because the lower viscosity facilitates greater velocities in the low viscosity zone, the low viscosity layer produces proportionally greater horizontal flow near the conducting lid, causing the base of the conducting lid to appear like a free boundary. The change in the local Rayleigh number and in the effective boundary condition both cause the top boundary layer to thin. Through a Green's function analysis, we have found that the low viscosity zone damps the response of the surface topography to the temperature anomalies at depth, whereas it causes the gravity and geoid response functions to change sign at depth counteracting the positive contributions from the shallower temperature variations. By increasing the viscosity contrast, the conbined effects of the thinning of the boundary layer and the behaviour of the response functions allow the apparent depth of compensation to become arbitrarily small. Therefore, shallow depths of compensation cannot be used to argue against dynamic support of mid-plate swells. Furthermore, we compared the distribution of the effective compensating densities, which is used to obtain the geoid, to that of Pratt compensation, which is often used to calculate the depth of compensation from geoid and topography data for mid-plate swells. For all of our calculations including those with no low viscosity layer, the effective gravitational mass distribution is more complex than assumed in simple Pratt models, so that the Pratt models are not an appropriate gauge of the compensation mechanism.  相似文献   
175.
We report Sr, Nd and Pb isotope ratios and parent and daughter element concentrations in 34 volcanic rocks from Samoa. The highly undersaturated post-erosional volcanics, which have erupted in Recent to Historic time along a 250-km-long fissure, have isotopic compositions that define fields distinct from those of the tholeiitic to alkalic lavas of the older Samoan shield volcanoes. Most shield lavas have206Pb/204Pb of 18.9–19.4,87Sr/86Sr of 0.7045–0.7055 and87Sr/86Sr (to 0.7075). In general, isotopic compositions of the shield lavas are similar to those of the Marquesas and Society Islands. Post-erosional samples have lower206Pb/204Pb and143Nd/144Nd and higher87Sr/86Sr than most shield lavas. The most striking feature of the post-erosional data is a negative correlation between207Pb/204Pb and206Pb/204Pb. This suggests that post-erosional lavas are derived from mixtures of the shield source and a high-207Pb/204Pb,87Sr/86Sr, low-206Pb/204Pb and143Nd/144Nd post-erosional source which may contain recycled ancient sediment. This enriched mantle domain may also underlie the Ontong-Java and Manihiki Plateaus to the north and west. Although both the Samoan shield and post-erosional lavas show chemical characteristics often associated with mantle plumes, only the shield volcanism can plausibly be related to a plume. The post-erosional eruptions appear to be the result of flexure and rifting due to plate bending at the northern termination of the Tonga Trench.  相似文献   
176.
Wetlands, one of the most productive systems in the biosphere are a unique ecosystem. They occur in landscapes that favor the ponding or slow runoff of surface water, discharge of ground water, or both. Wetlands are not only important for maintaining plant and animal diversity, but also for balancing global carbon budget via sequestrating or releasing CO2 from/into atmosphere depending on their management. Therefore, it is imperative to understand how wetlands form and function, then we can better manage, utilize, and protect these unique ecosystems. Hydric soils, hydrophytic vegetation, and wetland hydrology are the three main parameters of wetlands. These parameters are interrelated with each other which jointly influence the development and functions of wetland ecosystems. The objective of this paper was to report the current understanding of wetlands and provide future research directions. The paper will first focus on aspects of hydrology research in wetlands, and then shift to soil hydrosequence a  相似文献   
177.
We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.  相似文献   
178.
The St. Louis River Estuary (SLRE), a freshwater estuary bordering Duluth, Minnesota, Superior, Wisconsin, and the most western point of Lake Superior (46.74°, ? 92.13°), has a long history of human development since Euro-American settlement ~ 200 years ago. Due to degradation from logging, hydrologic modification, industrial practices, and untreated sewage, the SLRE was designated an Area of Concern in 1987. Action has been taken to restore water quality including the installation of the Western Lake Superior Sanitary District in 1978 to help remove beneficial use impairments. A better understanding of historical impacts and remediation is necessary to help document progress and knowledge gaps related to water quality, so a paleolimnological study of the SLRE was initiated. Various paleolimnological indicators (pigments, diatom communities, and diatom-inferred phosphorus) were analyzed from six cores taken throughout the SLRE and another from western Lake Superior. Reductions in eutrophic diatom taxa such as Cyclotella meneghiniana and Stephanodiscus after 1970 in certain cores suggest an improvement in water quality over the last 40 years. However, in cores taken from estuarine bay environments, persistence of eutrophic taxa such as Cyclostephanos dubius and Stephanodiscus binderanus indicate ongoing nutrient problems. Sedimentary pigments also indicate cyanobacteria increases in bays over the last two decades. Diatom model-inferred phosphorus and contemporary monitoring data suggest some of the problems associated with excess nutrient loads have been remediated, but modern conditions (internal phosphorus loading, changing climate) may be contributing to ongoing water quality impairments in some locations. The integrated record of biological, chemical, and physical indicators preserved in the sediments will aid state and federal agencies in determining where to target their resources.  相似文献   
179.
The spatial distribution of source areas and associated residence times of water in the catchment are significant factors controlling the annual cycles of dissolved organic carbon (DOC) concentration in Deer Creek (Summit County, Colorado). During spring snowmelt (April–August 1992), stream DOC concentrations increased with the rising limb of the hydrograph, peaked before maximum discharge, then declined rapidly as melting continued. We investigated catchment sources of DOC to streamflow, measuring DOC in tension lysimeters, groundwater wells, snow and streamflow. Lysimeter data indicate that near-surface soil horizons are a primary contributor of DOC to streamflow during spring snowmelt. Concentrations of DOC in the lysimeters decrease rapidly during the melt period, supporting the hypothesis that hydrological flushing of catchment soils is the primary mechanism affecting the temporal variation of DOC in Deer Creek. Time constants of DOC flushing, characterizing the exponential decay of DOC concentration in the upper soil horizon, ranged from 10 to 30 days for the 10 lysimeter sites. Differences in the rate of flushing are influenced by topographical position, with near-stream riparian soils flushed more quickly than soils located further upslope. Variation in the amount of distribution of accumulated snow, and asynchronous melting of the snowpack across the landscape, staggered the onset of the spring flush throughout the catchment, prolonging the period of increased concentrations of DOC in the stream. Streamflow integrates the catchment-scale flushing responses, yielding a time constant associated with the recession of DOC in the stream channel (84 days) that is significantly longer than the time constants observed for particular locations in the upper soil. © 1997 John Wiley & Sons, Ltd.  相似文献   
180.
Two variations of the integration of geology and archaeology have been proposed in the literature—archaeological geology and geoarchaeology. However, there is no agreement among practitioners as to the legitimacy of the distinctions that have been made. This disagreement suggests that the objectives and assumptions of this interdisciplinary field have not been adequately discussed among its practitioners. The published definitions of both of these subfields emphasize their geological and historical aspects rather than their anthropological and processual aspects. A comparison with zooarchaeology and paleoethnobotany suggests that the significance of geoarchaeology to anthropological archaeology has been slighted. This results from a failure to recognize the symbolic character of humans' interaction with their geologic environment. An attempt is made here to clarify the distinction between archaeological geology and geoarchaeology and to define objectives for the latter subfield that have anthropological significance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号