首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   3篇
地球物理   24篇
地质学   10篇
海洋学   1篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
  2015年   7篇
  2014年   6篇
  2013年   1篇
  2012年   6篇
  2010年   2篇
  2009年   1篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2000年   1篇
排序方式: 共有35条查询结果,搜索用时 0 毫秒
31.
32.
The effectiveness and accuracy of the superposition method in assessing the dynamic stiffness and damping coefficients (impedance functions) of embedded footings supported by vertical piles in homogeneous viscoelastic soil is addressed. To this end, the impedances of piled embedded footings are compared to those obtained by superposing the impedance functions of the corresponding pile groups and embedded footings treated separately, with the magnitude of the relative average differences being around 10–30%. The results are presented in a set of dimensionless graphs and simple expressions that can be used to estimate the dynamic stiffness and damping of piled embedded footings, provided that the impedance functions of the two individual components are known. This is precisely the reason why the superposition approach studied here is appealing, because such impedance functions for both embedded footings and pile groups are available for a wide range of cases. How to estimate the kinematic response functions of the system when those of the individual components are known is also discussed. To address the problem, parametric analyses performed using a 3D frequency‐domain elastodynamic BEM‐FEM formulation are presented for different pile–soil stiffness contrasts, embedment depths, pile‐to‐pile separations and excitation frequencies. Vertical, horizontal, rocking, and cross‐coupled horizontal‐rocking impedance functions, together with translational and rotational kinematic response functions, are discussed. The results suggest that the superposition concept, in conjunction with a correction strategy as that presented herein, can be employed in geotechnical design. For kinematic effects, the response functions of the embedded footing are found to provide reasonable estimates of the system's behaviour. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
33.
We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722?g?m?2?day?1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW?CNNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526?±?160?t?day?1 of which 453?t?day?1 (29.7?%) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4?C240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154?t?day?1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07?×?1014?J?day?1 or to a total heat flow of 1,237?MWt.  相似文献   
34.
La Cabaña peridotite is part of a dismembered ophiolite complex located within the metamorphic basement of the Coastal Cordillera of south-central Chile, and is the only location in Chile were Cr-spinels have been described so far. The La Cabaña peridotite is part of the Western Series unit, which comprises meta-sedimentary rocks, metabasites, and serpentinized ultramafic rocks. This unit has been affected by greenschist-facies metamorphism with reported peak PT conditions of 7.0–9.3 kbar and 380°–420 °C. Within La Cabaña peridotite Cr-spinels are present in two localities: Lavanderos and Centinela Bajo. In Lavanderos, Cr-spinel occurs in small chromitite pods and as accessory/disseminated grains with a porous or spongy texture in serpentinite, whereas in Centinela Bajo Cr-spinel is present as accessory zoned grains in partly serpentinized dunites, and in chromitite blocks. All Cr-spinels display variable degrees of alteration to Fe2+-rich chromite with a variation trend of major elements from chromite to Fe2+-rich chromite similar to those observed in other locations, i.e., an increase in Fe2O3 and FeO, a decrease in Al2O3 and MgO. Cr2O3 content increases from chromite to Fe2+-rich chromite in chromitite pods from Lavanderos and chromitite blocks from Centinela Bajo, but decreases in ferrian chromite zones in accessory grains from Centinela Bajo. The minor element (Ti, V, Zn, Ni) content is mostly low and does not exceed 0.4 wt.%, with the exception of MnO (<0.9 wt.%), which shows a correspondence with increasing degree of alteration. Cr# (Cr/Cr?+?Al) versus Mg# (Mg/Mg?+?Fe2+) and Fe3+/Fe3++Fe2+ versus Mg# plots are used to illustrate the Cr-spinel alteration process. Overall, the Cr-spinels from Lavanderos (chromitite pods and disseminated grains) exhibit Cr# values ranging from 0.6 to 1.0, Mg# (Mg/Mg?+?Fe2+) below 0.5, and (Fe3+/Fe3++Fe2+) <0.4. Cr-spinels from chromitites in Centinela Bajo have Cr# and Mg# values that range from 0.65 to 1.0, and 0.7-0.3, respectively, and (Fe3+/Fe3++Fe2+)?3+/Fe3++Fe2+) ratio is less than 0.4 in chromite cores and Fe2+-rich chromite, and >0.5 in ferrian chromite and Cr-magnetite. Interpretation of the data obtained and Cr-spinel textures indicate that the alteration of Cr-spinel is a progressive process that involves in its initial stages the reaction of chromite with olivine under water-saturated conditions to produce clinochlore and Fe2+-rich chromite. During this stage the chromite can also incorporate Ni, Mn, and/or Zn from the serpentinization fluids. As alteration progresses, Fe2+-rich chromite loses mass resulting in the development of a spongy texture. In a later stage and under more oxidizing conditions Fe3+ is incorporated in chromite/Fe2+-rich chromite shifting its composition to an Fe3+-rich chromite (i.e., ferrian chromite). Depending on the fluid/rock and Cr-spinel/silicate ratios, Cr-magnetite can also form over Fe2+-rich chromite and/or ferrian chromite as a secondary overgrowth. The compositional changes observed in Cr-spinels from La Cabaña reflect the initial stages of alteration under serpentinization conditions. Results from this study show that the alteration of Cr-spinels is dependent on temperature. The degree and extent of alteration (formation of Fe2+-rich and/or ferrian chromite) are controlled by the redox nature of the fluids, the Cr-spinel/silicate and the fluid/rock ratios.  相似文献   
35.
The influence of inclined piles on the dynamic response of deep foundations and superstructures is still not well understood and needs further research. For this reason, impedance functions of deep foundations with inclined piles, obtained numerically from a boundary element–finite element coupling model, are provided in this paper. More precisely, vertical, horizontal, rocking and horizontal–rocking crossed dynamic stiffness and damping functions of single inclined piles and 2 × 2 and 3 × 3 pile groups with battered elements are presented in a set of plots. The soil is assumed to be a homogeneous viscoelastic isotropic half‐space and the piles are modeled as elastic compressible Euler–Bernoulli beams. The results for different pile group configurations, pile–soil stiffness ratios and rake angles are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号