首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   1篇
  国内免费   2篇
大气科学   2篇
地球物理   15篇
地质学   38篇
海洋学   16篇
天文学   6篇
综合类   1篇
自然地理   31篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2017年   3篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   3篇
  2011年   9篇
  2009年   10篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   5篇
  2004年   7篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   6篇
  1999年   2篇
  1998年   1篇
  1997年   5篇
  1996年   3篇
  1995年   2篇
  1994年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1977年   1篇
  1973年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
21.
The Bonneville basin, located in north-western Utah, is a vast evaporite basin which is home to the world-renowned Bonneville Salt Flats international speedway and is a highly valued landscape undergoing rapid change and anthropogenic influence. Air quality, snowpack, the local hydrological system, and state tourism are all impacted by the nature of the surface sediments exposed in the Bonneville basin. Mapping the Bonneville basin over time with remote sensing methods provides insight into the dynamics and impacts of the changing surface landscape. Utilizing the Landsat-5 Thematic Mapper (TM) and Landsat-8 Operational Land Imager (OLI) sensors, a set of band math indices are empirically established to map the predominant halite, gypsum, and carbonates mineralogical zones of the Bonneville basin. Spectral comparisons of representative samples from the study area and image-derived spectra indicate the halite of the Bonneville basin is wet and that gypsum deposits are slightly mixed with halite. The established indices are assessed in four ways, all of which support the ability of the indices to accentuate the associated mineralogical endmembers. Two study areas within the Bonneville basin are investigated temporally from 1986, 1995, 2005, and 2016 and show changing patterns in mineral distribution that align with surface processes active through these timescales. These indices provide a resource for mapping mineralogy though time in evaporite basins globally with diverse applications for questions about land use and environmental change.  相似文献   
22.
23.
24.
Evaluation of land-use effects on coastal and marine ecosystems requires better understanding of the role of rivers in regulating mass transport from terrestrial to oceanic environments. Here we take advantage of the presence of a riverine lake to use paleoecological techniques to quantify impacts of logging, European-style agriculture, urbanization and continued terrestrial disturbance on mass transport and water quality in the northern drainage of the Mississippi River. Two 2-m sediment-cores recovered in 1999 from Lake St. Croix, a natural impoundment of the St. Croix River, were dated using 210Pb and 137Cs, and analyzed for historical changes (c. 1840–present) in sediment magnetic susceptibility, inorganic and organic matter content, biogenic silica, fossil pigments, and diatom microfossils. Inorganic sediment accumulation increased threefold between the mid-1800s and present, whereas clear signs of eutrophication were only evident after the mid-twentieth century when biogenic silica accumulation increased sixfold, diatom accumulation rates increased 20- to 50- fold, and the diatom community shifted from predominantly benthic species to assemblages composed mainly of planktonic taxa. Similarly, fossil pigment concentrations increased during the 1960s, and diatom-inferred total phosphorus (DI-TP) increased from ~30 μg TP l−1 c. 1910 to ~60 μg l−1 since 1990, similar to historical records since 1980. Together, these patterns demonstrate that initial land clearance did not result in substantive declines in water quality or nutrient mass transport, instead, substantial degradation of downstream environments was restricted to the latter half of the twentieth century. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D. R. Engstrom served as guest editor of the special issue.  相似文献   
25.
Late Quaternary soils in southern New Mexico support previous work that suggested pedogenic gypsum accumulates in successive stages as a function of time, similar to pedogenic carbonate. However, gypsum also occurs as small (0·5–1 mm), powdery spheres that we term snowball morphology. The snowball morphology represents one of the initial stages of pedogenic gypsum development. Scanning electron microscope analyses indicate that soil microorganisms and organic material may play a crucial role in the development of this morphology. However, no trends were found in the crystal habits of gypsum suggesting the snowball morphology forms in a dynamic environment.  相似文献   
26.
Prediction of future Arctic climate and environmental changes, as well as associated ice-sheet behavior, requires placing present-day warming and reduced ice extent into a long-term context. Here we present a record of Holocene climate and glacier fluctuations inferred from the paleolimnology of small lakes near Istorvet ice cap in East Greenland. Calibrated radiocarbon dates of organic remains indicate deglaciation of the region before ~10,500 years BP, after which time the ice cap receded rapidly to a position similar to or less extensive than present, and lake sediments shifted from glacio-lacustrine clay to relatively organic-rich gyttja. The lack of glacio-lacustrine sediments throughout most of the record suggests that the ice cap was similar to or smaller than present throughout most of the Holocene. This restricted ice extent suggests that climate was similar to or warmer than present, in keeping with other records from Greenland that indicate a warm early and middle Holocene. Middle Holocene magnetic susceptibility oscillations, with a ~200-year frequency in one of the lakes, may relate to solar influence on local catchment processes. Following thousands of years of restricted extent, Istorvet ice cap advanced to within 365 m of its late Holocene limit at ~AD 1150. Variability in the timing of glacial and climate fluctuations, as well as of sediment organic content changes among East Greenland lacustrine records, may be a consequence of local factors, such as elevation, continentality, water depth, turbidity, and seabirds, and highlights the need for a detailed spatial array of datasets to address questions about Holocene climate change.  相似文献   
27.
28.
A series of Mb 3.8–5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (~70–150 m). We present a suite of simulations that use a simple hydrogeologic‐geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10?17 m2 and specific storage coefficient of 10?7/m, injection at a rate of 5455 m3/d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz = 10?13 m2) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10?12 m2) and the surrounding crystalline basement (10?18 m2), the failure region can extend laterally 10 km away from the injection well.  相似文献   
29.
Tangential-flow ultrafiltration was used to isolate particulate and high-molecular-weight dissolved material from seawater collected at various depths and geographic regions of the Pacific and Atlantic Oceans. Ultrafiltration proved to be a relatively fast and efficient method for the isolation of hundreds of milligrams of material. Optical and electron microscopy of the isolated materials revealed that relatively fragile materials were recovered intact. Depth-weighted results of the size distribution of organic matter in seawater indicated that ˜ 75% of marine organic carbon was low-molecular-weight (LMW) dissolved organic carbon (< 1 nm), ˜ 24% was high-molecular-weight (HMW) dissolved organic carbon (1–100 nm), and ˜ 1% was particulate organic carbon (> 100 nm). The distribution of carbon in surface water was shifted to greater relative abundances of larger size fractions, suggesting a diagenetic sequence from macromolecular material to small refractory molecules. The average C:N ratios of particulate organic matter (POM) and HMW dissolved organic matter (DOM) were 7.7 and 16.7, respectively. Differences in C:N ratios between POM and HMW DOM were large and invariant with depth and geographic region, indicating that the aggregation of HMW DOM to form POM must be of minor significance to overall carbon dynamics. The stable carbon isotope composition (δ13C) of POM averaged −22.7%. in surface water and −25.2%. in subsurface water. Several possible explanations for the observed isotopic shift with depth were explored, but we were unable to discern the cause. The δ13C of HMW DOM samples was relatively constant and averaged −21.7%., indicating a predominantly marine origin for this material. The δ15N values of POM were highly variable (5.8–15.4%.), and the availability of nitrate in surface waters appeared to be the major factor influencing δ15N values in the equatorial Pacific. In the upwelling region nitrate concentrations were relatively high and δ15N values of POM were low, whereas to the north and south of the upwelling nitrate concentrations were low and δ15N values were high. The δ15N values of HMW DOM reflected the same trends observed in the POM fraction and provided the first such evidence for biological cycling of dissolved organic nitrogen (DON). Using the observed δ15N values and an estimate of meridional advection velocity, we estimated a turnover time of 0.3 to 0.5% day−1 for HMW DON. These results suggest a major role for DON in the upper ocean nitrogen cycle.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号