首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72篇
  免费   4篇
  国内免费   3篇
测绘学   1篇
大气科学   13篇
地球物理   14篇
地质学   27篇
海洋学   11篇
天文学   9篇
综合类   3篇
自然地理   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2018年   4篇
  2017年   3篇
  2016年   12篇
  2015年   1篇
  2014年   9篇
  2013年   2篇
  2012年   9篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   3篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有79条查询结果,搜索用时 46 毫秒
31.
Two weeks of measurements of the boundary-layer height over a small island (Christiansø) in the Baltic Sea are discussed. The meteorological conditions are characterised by positive heat flux over the sea. The boundary-layer height was simulated with two models, a simple applied high-resolution (2 km × 2 km) model, and the operational numerical weather prediction model HIRLAM (grid resolution of 22.5 km × 22.5 km). For southwesterly winds it was foundthat a relatively large island (Bornholm) lying 20-km upwind of the measuring site influences the boundary-layer height. In this situation the high-resolution simple applied model reproduces the characteristics of the boundary-layer height over the measuring site. Richardson-number based methods using data from simulations with the HIRLAM model fail, most likely because the island and the water fetch to the measuring site are about the size of the grid resolution of the HIRLAM model and therefore poorly resolved. For northerly winds, the water fetch to the measuring site is about 100 km. Both models reproduce the characteristics of the height of the marine boundary layer. This suggests that the HIRLAM model adequately resolves a water fetch of 100 km with respect to predictions of the height of the marine boundary layer.  相似文献   
32.
An alternative approach to the traditionally employed method is proposed for treating the ionospheric range errors in transionospheric propagation such as for GNSS positioning or satellite-borne SAR. It enables the effects due to horizontal gradients of electron density (as well as vertical gradients) in the ionosphere to be explicitly accounted for. By contrast with many previous treatments, where the expansion of the solution for the phase advance is represented as the series in the inverse frequency powers and the main term of the expansion corresponds to the true line-of-sight distance from the transmitter to the receiver, in the alternative technique the zero-order term is the rigorous solution for a spherically layered ionosphere with any given vertical electron density profile. The first-order term represents the effects due to the horizontal gradients of the electron density of the ionosphere, and the second-order correction appears to be negligibly small for any reasonable parameters of the path of propagation and its geometry for VHF/UHF frequencies. Additionally, an “effective” spherically symmetric model of the ionosphere has been introduced, which accounts for the major contribution of the horizontal gradients of the ionosphere and provides very high accuracy in calculations of the phase advance.  相似文献   
33.
34.
River inputs of nutrients and organic matter impact the biogeochemistry of arctic estuaries and the Arctic Ocean as a whole, yet there is considerable uncertainty about the magnitude of fluvial fluxes at the pan-Arctic scale. Samples from the six largest arctic rivers, with a combined watershed area of 11.3?×?106?km2, have revealed strong seasonal variations in constituent concentrations and fluxes within rivers as well as large differences among the rivers. Specifically, we investigate fluxes of dissolved organic carbon, dissolved organic nitrogen, total dissolved phosphorus, dissolved inorganic nitrogen, nitrate, and silica. This is the first time that seasonal and annual constituent fluxes have been determined using consistent sampling and analytical methods at the pan-Arctic scale and consequently provide the best available estimates for constituent flux from land to the Arctic Ocean and surrounding seas. Given the large inputs of river water to the relatively small Arctic Ocean and the dramatic impacts that climate change is having in the Arctic, it is particularly urgent that we establish the contemporary river fluxes so that we will be able to detect future changes and evaluate the impact of the changes on the biogeochemistry of the receiving coastal and ocean systems.  相似文献   
35.
Analysis of profiles of meteorological measurements from a 160 m high mast at the National Test Site for wind turbines at Høvsøre (Denmark) and at a 250 m high TV tower at Hamburg (Germany) shows that the wind profile based on surface-layer theory and Monin-Obukhov scaling is valid up to a height of 50–80 m. At higher levels deviations from the measurements progressively occur. For applied use an extension to the wind profile in the surface layer is formulated for the entire boundary layer, with emphasis on the lowest 200–300 m and considering only wind speeds above 3 m s?1 at 10 m height. The friction velocity is taken to decrease linearly through the boundary layer. The wind profile length scale is composed of three component length scales. In the surface layer the first length scale is taken to increase linearly with height with a stability correction following Monin-Obukhov similarity. Above the surface layer the second length scale (L MBL ) becomes independent of height but not of stability, and at the top of the boundary layer the third length scale is assumed to be negligible. A simple model for the combined length scale that controls the wind profile and its stability dependence is formulated by inverse summation. Based on these assumptions the wind profile for the entire boundary layer is derived. A parameterization of L MBL is formulated using the geostrophic drag law, which relates friction velocity and geostrophic wind. The empirical parameterization of the resistance law functions A and B in the geostrophic drag law is uncertain, making it impractical. Therefore an expression for the length scale, L MBL , for applied use is suggested, based on measurements from the two sites.  相似文献   
36.
Weathering is both an acid‐base and a redox reaction in which rocks are titrated by meteoric carbon dioxide (CO2) and oxygen (O2). In general, the depths of these weathering reactions are unknown. To determine such depths, cuttings of Rose Hill shale were investigated from one borehole from the ridge and four boreholes from the valley at the Susquehanna Shale Hills Observatory (SSHO). Pyrite concentrations are insignificant to depths of 23 m under the ridge and 8–9 m under the valley. Likewise, carbonate concentrations are insignificant to 22 and 2 m, respectively. In addition, a 5–6 m‐thick fractured layer directly beneath the land surface shows evidence for loss of illite, chlorite, and feldspar. Under the valley, secondary carbonates may have precipited. The limited number of boreholes and the tight folding make it impossible to prove that depth variations result from weathering instead of chemical heterogeneity within the parent shale. However, carbonate depletion coincides with the winter water table observed at ~20 m (ridge) and ~2 m depth (valley). It would be fortuitous if carbonate‐containing strata are found under ridge and valley only beneath the water table. Furthermore, pyrite and carbonate react quickly and many deep reaction fronts for these minerals are described in the literature. We propose that deep transport of O2 initiates weathering at SSHO and many other localities because pyrite commonly oxidizes autocatalytically to acidify porewaters and open porosity. According to this hypothesis, the mineral distributions at SSHO are nested reaction fronts that overprint protolith stratigraphy. The fronts are hypothesized to lie subparallel to the land surface because O2 diffuses to the water table and causes oxidative dissolution of pyrite. Pyrite‐derived sulfuric acid (H2SO4) plus CO2 also dissolve carbonates above the water table. To understand how reaction fronts record long‐term coupling between erosion and weathering will require intensive mapping of the subsurface. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
37.
Weathering disaggregates rock into regolith – the fractured or granular earth material that sustains life on the continental land surface. Here, we investigate what controls the depth of regolith formed on ridges of two rock compositions with similar initial porosities in Virginia (USA). A priori, we predicted that the regolith on diabase would be thicker than on granite because the dominant mineral (feldspar) in the diabase weathers faster than its granitic counterpart. However, weathering advanced 20× deeper into the granite than the diabase. The 20 × ‐thicker regolith is attributed mainly to connected micron‐sized pores, microfractures formed around oxidizing biotite at 20 m depth, and the lower iron (Fe) content in the felsic rock. Such porosity allows pervasive advection and deep oxidation in the granite. These observations may explain why regolith worldwide is thicker on felsic compared to mafic rock under similar conditions. To understand regolith formation will require better understanding of such deep oxidation reactions and how they impact fluid flow during weathering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
38.
Wildfires are a cause of soil water repellency (hydrophobicity), which reduces infiltration whilst increasing erosion and flooding from post-fire rainfall. Post-fire soil water repellency degrades over time, often in response to repeated wetting and drying of the soil. However, in mountainous fire-prone forests such as those in the Western USA, the fire season often terminates in a cold and wet winter, during which soils not only wet and dry, but also freeze and thaw. Little is known about the effect of repeated freezing and thawing of soil on the breakdown of post-fire hydrophobicity. This study characterized the changes in hydrophobicity of Sierra Nevada mountain soils exposed to different combinations of wet–dry and freeze–thaw cycling. Following each cycle, hydrophobicity was measured using the Molarity of Ethanol test. Hydrophobicity declined similarly across all experiments that included a wetting cycle. Repeated freezing and thawing of dry soil did not degrade soil water repellency, but freeze–thaw cycles decreased hydrophobicity in wet soils. Total soil organic matter content was not different between soils of contrasting hydrophobicity. Macroscopic changes such as fissures and cracks were observed to form as soil hydrophobicity decayed. Microscopic changes revealed by scanning electron microscope imagery suggest different levels of soil aggregation occurred in samples with distinct hydrophobicities, although the size of aggregates was not clearly correlated to the change in water repellency due to wet–dry and freeze–thaw cycling. A 9-year climate and soil moisture record from Providence Critical Zone Observatory was combined with the laboratory results to estimate that hydrophobicity would persist an average of 144 days post-fire at this well-characterized, typical mid-elevation Sierra Nevada site. Most of the breakdown in soil water repellency (79%) under these climate conditions would be attributable to freeze–thaw cycling, underscoring the importance of this process in soil recovery from fire in the Sierra Nevada.  相似文献   
39.
40.
Scientists as well public institutions dealing with geospatial data often work with a large amount of heterogeneous data deriving from different sources. Without a well-defined, organized structure they face problems in finding and reusing existing data, and as consequence this may cause data inconsistency and storage problems. A catalog system based on the metadata of spatial data facilitates the management of large amount of data and offers service to retrieve, discover and exchange geographic data in an quick and easy fashion. Currently, most online catalogs are more focusing on the geographic data and there has been only few interests in catalogizing Earth observation data, in which in addition the acquisition information matters. This article presents an automatic metadata extraction approach that creates from different optical data deriving from various satellite missions of scientific interest (i.e. MODIS, LANDSAT, RapidEye, Suomi-NPP VIIRS, Sentinel-1A, Sentinel-2A) metadata information, based on an extended model of the standard ISO 19115. The XML schema ISO 19139-2 with the support of gridded and imagery information defined in ISO 19115-2 was examined, and based on the requirements of experts working in the research field of Earth observation the schema was extended. The XML schema ISO 19139-2 and its extension has been deployed as a new schema plugin in the spatial catalog Geonetwork Open Source in order to store all relevant metadata information about satellite data and the appropriate acquisition and processing information in an online catalog. A real-world scenario that is productively used in the EURAC research group institute for Applied Remote Sensing illustrates a workflow management for Earth observation data including data processing, metadata extraction, generation and distribution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号