首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54817篇
  免费   1475篇
  国内免费   559篇
测绘学   1477篇
大气科学   3978篇
地球物理   12315篇
地质学   19630篇
海洋学   4394篇
天文学   12006篇
综合类   368篇
自然地理   2683篇
  2022年   286篇
  2021年   535篇
  2020年   568篇
  2019年   553篇
  2018年   1677篇
  2017年   1508篇
  2016年   1706篇
  2015年   1034篇
  2014年   1560篇
  2013年   2655篇
  2012年   2120篇
  2011年   2410篇
  2010年   1939篇
  2009年   2654篇
  2008年   2212篇
  2007年   2135篇
  2006年   2018篇
  2005年   2232篇
  2004年   2219篇
  2003年   1933篇
  2002年   1416篇
  2001年   1194篇
  2000年   1107篇
  1999年   949篇
  1998年   974篇
  1997年   918篇
  1996年   777篇
  1995年   762篇
  1994年   703篇
  1993年   581篇
  1992年   549篇
  1991年   555篇
  1990年   621篇
  1989年   533篇
  1988年   493篇
  1987年   627篇
  1986年   515篇
  1985年   654篇
  1984年   731篇
  1983年   718篇
  1982年   616篇
  1981年   635篇
  1980年   540篇
  1979年   510篇
  1978年   518篇
  1977年   466篇
  1976年   450篇
  1975年   463篇
  1974年   435篇
  1973年   471篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
101.
102.
We present an improved analytic calculation for the tidal radius of satellites and test our results against N -body simulations.
The tidal radius in general depends upon four factors: the potential of the host galaxy, the potential of the satellite, the orbit of the satellite and the orbit of the star within the satellite . We demonstrate that this last point is critical and suggest using three tidal radii to cover the range of orbits of stars within the satellite. In this way we show explicitly that prograde star orbits will be more easily stripped than radial orbits; while radial orbits are more easily stripped than retrograde ones. This result has previously been established by several authors numerically, but can now be understood analytically. For point mass, power-law (which includes the isothermal sphere), and a restricted class of split power-law potentials our solution is fully analytic. For more general potentials, we provide an equation which may be rapidly solved numerically.
Over short times (≲1–2 Gyr ∼1 satellite orbit), we find excellent agreement between our analytic and numerical models. Over longer times, star orbits within the satellite are transformed by the tidal field of the host galaxy. In a Hubble time, this causes a convergence of the three limiting tidal radii towards the prograde stripping radius. Beyond the prograde stripping radius, the velocity dispersion will be tangentially anisotropic.  相似文献   
103.
104.
We analyse a high-redshift sample (0.4 < z < 0.5) of luminous red galaxies (LRGs) extracted from the Sloan Digital Sky Survey data release 4 and their surrounding structures to explore the presence of alignment effects of these bright galaxies with neighbour objects. In order to avoid projection effects, we compute photometric redshifts for galaxies within 3  h −1 Mpc in projection of LRGs and calculate the relative angle between the LRG major axis and the direction to neighbours within 1000 km s−1. We find a clear signal of alignment between LRG orientations and the distribution of galaxies within 1.5  h −1 Mpc. The alignment effects are present only for the red population of tracers; LRG orientation is uncorrelated to the blue population of neighbour galaxies. These results add evidence to the alignment effects between primaries and satellites detected at low redshifts. We conclude that such alignments were already present at z ∼ 0.5.  相似文献   
105.
Distances to nine dark globules are determined by a method using optical ( VRI ) and near-infrared (near-IR) ( JHK ) photometry of stars projected towards the field containing the globules. In this method, we compute intrinsic colour indices of stars projected towards the direction of the globule by dereddening the observed colour indices using various trial values of extinction   A V   and a standard extinction law. These computed intrinsic colour indices for each star are then compared with the intrinsic colour indices of normal main-sequence stars and a spectral type is assigned to the star for which the computed colour indices best match with the standard intrinsic colour indices. Distances ( d ) to the stars are determined using the   A V   and absolute magnitude  ( MV )  corresponding to the spectral types thus obtained. A distance versus extinction plot is made and the distance at which   A V   undergoes a sharp rise is taken to be the distance to the globule. All the clouds studied in this work are in the distance range 160–400 pc. The estimated distances to dark globules LDN 544, LDN 549, LDN 567, LDN 543, LDN 1113, LDN 1031, LDN 1225, LDN 1252 and LDN 1257 are  180 ± 35, 200 ± 40, 180 ± 35, 160 ± 30, 350 ± 70, 200 ± 40, 400 ± 80, 250 ± 50  and 250 ± 50 pc, respectively. Using the distances determined, we have estimated the masses of the globules and the far-IR luminosity of the IRAS sources associated with them. The mass of the clouds studied are in the range  10–200 M  .  相似文献   
106.
G. Herman  M. Podolak 《Icarus》1985,61(2):252-266
A one-dimensional simulation of pure water-ice cometary nuclei is presented, and the effect of the nucleus as a heat reservoir is considered. The phase transition from amorphous to crystalline ice is studied for two cases: (1) where the released latent heat goes entirely into heating adjacent layers and (2) where the released latent heat goes entirely into sublimation. For a Halley-like orbit it was found that for case 1 the phase boundary penetrates about 15 m on the first orbit and does not advance until sublimation brings the surface to some 10 m from the phase boundary. For case 2 the phase boundary penetrates about 1 m below the surface and remains at this depth as the surface sublimates. For an orbit like that of Schwassmann-Wachmann 1 the phase boundary penetrates about 50 m initially for case 1 and about 1 m for case 2. There is no further transformation until the entire comet is heated slowly to near the transition temperature, after which the entire nucleus is converted to crystalline ice. For an Encke-type orbit case 1 gives a nearly continuous transition of the entire nucleus to crystalline ice, while for case 2 the initial penetration is about 8 m and remains at this depth relative to the surface as sublimation decreases the cometary radius. Thus the entire comet is converted to crystalline ice just before it is completely dissipated.  相似文献   
107.
The coma morphology and short-term evolution was investigated of three non-periodic comets in retrograde orbits, C/2001 Q4 (NEAT), C/2002 T7 (LINEAR), and C/2003 K4 (LINEAR). All three comets display distinct coma features, which were very different from one comet to the next and remained rather constant in shape during the observational period. A single, broad feature perpendicular to the sun-tail direction dominated the coma of C/2003 K4 in all used filters (B,V,R,I), whereas the coma of Comet C/2002 T7 exhibited different features in blue and red filters. C/2001 Q4 showed rather complex coma morphology with clear short-term variability in coma brightness. Therefore, these non-periodic comets neither show a featureless coma nor any similarities of the features detected. The overall distribution of coma material was investigated from the shape of radial coma profiles averaged around the comet nucleus. For C/2001 Q4 and C/2002 T7, the slopes fitted to the linear part of these profiles are flatter in the blue than in the red, which can be explained by the presence of coma gas. For C/2003 K4 no such difference is indicated in the May observations (r = 2.3 AU), while in July (r = 1.7 AU) the profiles in the B-filter are flatter than in V, R, and I, hence gas contamination was relevant at least in the B filter. The R and I filter images were used to determine approximate Afρ values of each comet as a function of time.  相似文献   
108.
109.
We have studied the science rationale, goals and requirements for a mission aimed at using the gravitational lensing from the Sun as a way of achieving high angular resolution and high signal amplification. We find that such a mission concept is compromised by several practical problems. Most severe are the effects due to the plasma in the solar atmosphere which cause refraction and scattering of the propagating rays. These effects either limit the frequencies that can be observed to those above ∼1 THz, or they move the optical point outwards beyond the vacuum value of ≥550 au. (Thus for observing frequency of 300 GHz the optical point is moved outwards to ∼ 680 au.) Density fluctuations in the inner solar atmosphere will further cause random pathlength differences for different rays. The corrections for the radiation from the Sun itself will also be a major challenge at any wavelength used, but could be mitigated with coronographic techniques. Given reasonable constraints on the spacecraft (particularly in terms of size and propulsion), source selection as well as severe navigational constraints further add to the difficulties for a potential mission. Nevertheless, unbiased surveys of small-scale structure on the sky at short wavelengths might be the most promising application of such a mission.  相似文献   
110.
 The great continental ice sheets of the Pleistocene represented a significant topographic obstacle to the westerly winds in northern midlatitudes. This work explores how consequent changes in the atmospheric stationary wave pattern might have affected the shape and growth of the ice sheets themselves. A one dimensional (1-D) model is developed which permits an examination of the types and magnitudes of the feedbacks that might be expected. When plausible temperature perturbations are introduced at the ice-sheet margin which are proportional to the stationary wave amplitude, the equilibrium shape of the ice sheet is significantly altered, and depends on the sign of the perturbation. The proposed feedback also affects the response of the ice sheet to time-varying climate forcing. The results suggest that the evolution of a continental-scale ice sheet with a land-based margin may be significantly determined by the changes it induces in the atmospheric circulation. Received: 1 October 1999 / Accepted: 17 July 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号