首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   0篇
  国内免费   2篇
地球物理   6篇
地质学   45篇
海洋学   20篇
  2021年   3篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   8篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   4篇
  2011年   6篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   2篇
  2006年   7篇
  2000年   1篇
  1995年   1篇
排序方式: 共有71条查询结果,搜索用时 15 毫秒
51.
The hypothesis about the interrelation of the integral water-vapor concentration (from data of microwave satellite systems) and plural tropical cyclogenesis in cyclonogenerating water areas of the World Ocean in 2001 is verified with the aid of the EVA-01 (IKI RAN) database (DB) with elements of the objectrelation type formed by the authors. It is experimentally proved in the work that there is a critical value of the integral water-vapor concentration (a peculiar necessary condition) at which the mature form of a tropical cyclone (TC) is formed with a lifetime exceeding 24 h. It is also experimentally proved that, in the same time interval, there is another group of TCs with a short lifetime (less than than 24 h) which do not possess a clearly pronounced boundary value of the water-vapor intensity and can be formed in a wide range of its values. The relations between the regions with an increased concentration of water vapor and genesis of TCs have become obvious only with the use of object-relation computer technologies.  相似文献   
52.
A geographic information system (GIS “Volcanic belts”) was used for analyzing the spatial and temporal relationship between tectono-magmatic cycles in the Cenozoic that took place at the convergent plate boundaries, mostly in volcanic arc-back-arc systems. The onset of back-arc basins and subaerial arc volcanism and their main evolutionary stages are shown to have occurred about the same time. These processes are still ongoing, which is indicated by today’s active volcanoes, high heat flows, and high deep-focus seismicity. The crust underlying both tectonic structures undergoes transformation, which results in a significant thinning of the “granite” layer within the volcanic belts, whereas crust within the back-arc basins changes its properties to the transitional (suboceanic) and oceanic type crusts. All processes that occur at the convergent plate boundaries can be described within the arc-back-arc system, the principal dynamic components of which are the asthenospheric plume upwelling above the continent edge and the oceanward-spreading plume head. This was accompanied by a gradual crustal thinning in the back-arc region and the formation of areas with oceanic crust, as well as by involvement of crustal material, together with rocks of the subducting slab, into subduction processes. As a result, the continental crust is removed from the tectonosphere and stored in the “slab cemetery.” Only a minor portion of the crustal materials is returned to the surface as subduction-related magmatism.  相似文献   
53.
Results of the isotope-geochronological studies of the Late Cenozoic magmatism of Caucasus have been considered. The Neogene-Quaternary volcanic activity is found to have evolved during the last 15 m. y. being most intensive in the Middle-Late Pliocene. Within separate neovolcanic areas of the Caucasus region, magmatism was of a clearly discrete character when intense eruption periods interchanged with prolonged (up to several million years) times of quiet conditions. Four stages of young magmatism of the Caucasus are recognized: the Middle Miocene (15–13 Ma), the Late Miocene (9–5 Ma), the Pliocene (4.5–1.6 Ma), and the Quaternary (less than 1.5 Ma). However, for certain areas the time limits of these stages were shifted relative to each other and overlap the whole age range from the mid-Miocene to the end of the Quaternary period. Therefore, within the collision zone, the Neogene-Quaternary magmatism evolved almost continuously during almost the last 9 m. y., but in the time interval of 13–9 Ma in the Caucasian segment, volcanic activity was possibly low. No evidence of directed lateral migration of volcanic activity within the entire Caucasus region was found. At the same time, in the Lesser Caucasus the young magmatism commenced earlier (∼15 Ma), compared to the Greater Caucasus (∼8 Ma).  相似文献   
54.
The series of two papers presents a comprehensive isotope-geochronological and petrological-geochemical study of the Late Quaternary Tendürek Volcano (Eastern Turkey), one of the greatest volcanoes within the Caucasian—Eastern Anatolian segment of the Alpine foldbelt. The first article discusses the results of chronostratigraphic reconstruction and provides the main petrographic characteristics of the Tendürek’s igneous rocks. The K-Ar dating results show that the magmatic activity of the Tendürek Volcano developed in the Late Pleistocene time, over the period of the last 250 thousand years. Five discrete phases (I—250–200 ka, II—200–150 ka, III—150–100 ka, IV—100–70 ka, and V—<50 ka) of the youngest magmatism were identified in this study. The first two phases were represented by the fissure eruptions of alkaline basic lavas and subsequent formation of vast lava plateaus, the Çald?ran and Do?ubeyaz?t plains. In the following phases, the intermediate and moderately-acid volcanic rocks of mildly-alkaline or alkaline series started to dominate among the eruption products. According to their petrographic characteristics, the rocks of Tendürek Volcano are assigned to the alkaline association with Na-specifics (hawaiites-mugearites-benmoreites). The available geological, isotope-geochronological, and geomorphological data suggest that the Tendürek Volcano is potentially active. Nowadays, Tendürek reaches the caldera stage of its development.  相似文献   
55.
New data on the Akkermanov deposit characterized by specific structure and composition of primary (carbonate) and secondary (manganese oxide) ores are presented. Distribution of mineralization in host rocks and weathering crusts is considered. It is shown that manganiferous carbonate rocks, which host orebodies, formed in a marine basin with well-aerated bottom waters. Oxide ores are mainly composed of crystalline pyrolusite produced by multiple processes of the oxidation of manganese compounds. In this respect, the Akkermanov deposit differs drastically from all manganese deposits developed in Russia and Ukraine.  相似文献   
56.
57.
58.
Izvestiya, Atmospheric and Oceanic Physics - In the period of intense ice melting, algorithms retrieving sea-ice concentration from satellite microwave radiometry (SMR) data may fail to detect vast...  相似文献   
59.
The first Sm-Nd and Rb-Sr dates were obtained for the dynamometamorphic processes associated with the origin and evolution of the Moncha Tundra fault, Kola Peninsula, which separates two large Early Paleoproterozoic layered intrusions: the Monchegorsk Ni-bearing mafic-ultramafic intrusion and the Main Range massif of predominantly mafic composition. The fault belongs to the regional Central Kola fault system, whose age was unknown. The material for the dating included metamorphic minerals from blastomylonitic rocks recovered by structural borehole M-1. Mineralogical thermobarometry suggests that the metamorphism occurred at 6.9–7.6 kbar and 620–640°C, which correspond to the amphibolite facies. The Sr and Nd isotopic systems were re-equilibrated, and their study allowed us to date the dynamometamorphic processes using mineral isochrons. It was established that the Moncha Tundra fault, and, respectively, the whole Central Kola fault system appeared in the middle of Paleoproterozoic ~2.0–1.9 Ga, simultaneously with the Svecofennian orogen in the central part of the region and the Lapland-Kola orogen in its northeastern part. Another episode of dynamometamorphism that occurred at 1.60–1.65 Ga is envisaged.  相似文献   
60.
The evolution of terrestrial planets (the Earth, Venus, Mars, Mercury, and Moon) was proved to have proceeded according to similar scenarios. The primordial crusts of the Earth, Moon, and, perhaps, other terrestrial planets started to develop during the solidification of their global magmatic “oceans”, a process that propagated from below upward due to the difference in the adiabatic gradient and the melting point gradient. Consequently, the lowest melting components were “forced” toward the surfaces of the planets in the process of crystallization differentiation. These primordial crusts are preserved within ancient continents and have largely predetermined their inner structure and composition. Early tectono-magmatic activity at terrestrial planets was related to the ascent of mantle plumes of the first generation, which consisted of mantle material depleted during the development of the primordial crusts. Intermediate evolutionary stages of the Earth, Moon, and other terrestrial planets were marked by an irreversible change related to the origin of the liquid essentially iron cores of these planets. This process induced the ascent of mantle superplumes of the second generation (thermochemical), whose material was enriched in Fe, Ti, incompatible elements, and fluid components. The heads of these superplumes spread laterally at shallower depths and triggered significant transformations of the upper shells of the planets and the gradual replacement of their primordial crusts of continental type by secondary basaltic crusts. The change in the character of the tectono-magmatic activity was associated with modifications in the environment at the surface of the Earth, Mars, and Venus. The origin of thermochemical mantle plumes testifies that the tectono-magmatic process involved then material of principally different type, which had been previously “conserved” at deep portions of the planets. This was possible only if (1) the planetary bodies initially had a heterogeneous inner structure (with an iron core and silicate mantle made up of chondritic material); and (2) the planetary bodies were heated from their peripheral toward central portions due to the passage of a “thermal wave”, with the simultaneous cooling of the outer shells. The examples of the Earth and Moon demonstrate that the passage of such a “wave” through the silicate mantles of the planets was associated with the generation of mantle plumes of the first generation. When the “wave” reached the cores, whose composition was close to the low-temperature Fe + FeS eutectic, these cores started to melt and gave rise to superplumes of the second generation. The “waves” are thought to have been induced by the acceleration of the rotation of these newly formed planets due to the decrease of their radii because of the compaction of their material. When this process was completed, the rotation of the planets stabilized, and the planets entered their second evolutionary stage. It is demonstrated that terrestrial planets are spontaneously evolving systems, whose evolution was accompanied by the irreversible changes in their tectono-magmatic processes. The evolution of most of these planets (except the Earth) is now completed, so that they “dead” planetary bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号