首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109312篇
  免费   1592篇
  国内免费   718篇
测绘学   2362篇
大气科学   7293篇
地球物理   21239篇
地质学   39148篇
海洋学   9869篇
天文学   24974篇
综合类   289篇
自然地理   6448篇
  2022年   711篇
  2021年   1209篇
  2020年   1341篇
  2019年   1487篇
  2018年   2964篇
  2017年   2793篇
  2016年   3250篇
  2015年   1714篇
  2014年   3167篇
  2013年   5591篇
  2012年   3473篇
  2011年   4576篇
  2010年   4149篇
  2009年   5244篇
  2008年   4630篇
  2007年   4769篇
  2006年   4375篇
  2005年   3174篇
  2004年   3132篇
  2003年   2990篇
  2002年   2885篇
  2001年   2502篇
  2000年   2457篇
  1999年   1978篇
  1998年   2061篇
  1997年   1932篇
  1996年   1678篇
  1995年   1629篇
  1994年   1397篇
  1993年   1343篇
  1992年   1230篇
  1991年   1277篇
  1990年   1269篇
  1989年   1100篇
  1988年   1023篇
  1987年   1173篇
  1986年   1085篇
  1985年   1330篇
  1984年   1481篇
  1983年   1437篇
  1982年   1330篇
  1981年   1247篇
  1980年   1122篇
  1979年   1064篇
  1978年   1010篇
  1977年   933篇
  1976年   884篇
  1975年   878篇
  1974年   855篇
  1973年   946篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
981.
Predictions of global changes in relative sea level caused by retreat of the Antarctic Ice Sheet from its 18,000 yr B.P. maximum to its present size are calculated numerically. When combined with the global predictions of relative sea-level change resulting from retreat of the Northern Hemisphere ice sheets, the results may be compared directly to observations of sea-level change on the Antarctic continent as well as at distant localities. The comparison of predictions to the few observations of sea-level change on Antarctica supports the view that the Antarctic Ice Sheet was larger 18,000 years ago than at present. The contribution of the Antarctic Ice Sheet to the total eustatic sea-level rise is assumed to be 25 m (25% of the assumed total eustatic rise). If as little as 0.7 m of this 25-m rise occurred between 5000 yr B.P. and the present, few mid-oceanic islands would emerge. If the Antarctic Ice Sheet attained its present dimensions by 6000 yr B.P., however, and if the volume of the ocean has remained constant for the past 5000 years, numerous islands throughout the Southern Hemisphere would emerge. It is suggested that a thorough study of Pacific islands, believed by some to have slightly emerged shorelines of Holocene age, would yield useful information about ocean volume changes during the past 5000 years, and hence on the glacial history of the Antarctic Ice Sheet.  相似文献   
982.
A comparison of published metabasite amphibole analyses from medium and low-pressure metamorphic terrains reveals that there is no systematic variation in Na, NaM4, Al or AlVI as a function of pressure. This may be due to blurring of the differences by variation in oxidation state, or by analytical differences between laboratories. It is not due to variable Mg/Fe in whole rocks. Differences that can be recognised are generally higher Ti/Al ratios in the low-pressure amphiboles, and a very poorly developed compositional gap between actinolite and hornblende compared with a well-developed gap at medium pressures. These features, together with the relatively low-grade appearance of calcic plagioclase at low pressures, provide the best means of distinguishing metabasites from the two facies series.All three features can be explained by the configuration of cation-exchange equilibria at the greenschist/amphibolite facies boundary. Enrichment in Ti at low-pressures is due to the positive slope of reactions partitioning Ti into the amphibole. The composition gap in amphiboles at medium-pressure is due to overstepping of the tschermakite-enriching equilibrium. At low pressures this overstepping still occurs, but the equilibrium tschermakite-content in the amphibole is much lower for a given amount of overstepping. The relatively low-grade appearance of oligoclase at low pressures is due to convergence of the tschermakite and anorthite-enriching equilibria with decreasing pressure.  相似文献   
983.
984.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
985.
Mandal  Prantik  Srinagesh  D.  Vijayaraghavan  R.  Suresh  G.  Naresh  B.  Raju  P. Solomon  Devi  Aarti  Swathi  K.  Singh  Dhiraj K.  Srinivas  D.  Saha  Satish  Shekar  M.  Sarma  A. N. S.  Murthy  YVVBSN 《Natural Hazards》2022,111(3):2241-2260
Natural Hazards - Since the initial collision at 55 Ma, rocks of the Indian crust below the Himalayas have undergone modification chemically and compositionally due to the ongoing...  相似文献   
986.
987.
Small polystyrene beads are becoming a common component of the plankton in certain areas. They are derived from the effluents of polystyrene manufacturers.  相似文献   
988.
We present the results of a multidisciplinary study of the Ms = 6.2, 1995, June 15, Aigion earthquake (Gulf of Corinth, Greece). In order to constrain the rupture geometry, we used all available data from seismology (local, regional and teleseismic records of the mainshock and of aftershocks), geodesy (GPS and SAR interferometry), and tectonics. Part of these data were obtained during a postseismic field study consisting of the surveying of 24 GPS points, the temporary installation of 20 digital seismometers, and a detailed field investigation for surface fault break. The Aigion fault was the only fault onland which showed detectable breaks (< 4 cm). We relocated the mainshock hypocenter at 10 km in depth, 38 ° 21.7 N, 22 ° 12.0 E, about 15 km NNE to the damaged city of Aigion. The modeling of teleseismic P and SH waves provides a seismic moment Mo = 3.4 1018 N.m, a well constrained focal mechanism (strike 277 °, dip 33 °, rake – 77°), at a centroidal depth of 7.2 km, consistent with the NEIC and the revised Harvard determinations. It thus involved almost pure normal faulting in agreement with the tectonics of the Gulf. The horizontal GPS displacements corrected for the opening of the gulf (1.5 cm/year) show a well-resolved 7 cm northward motion above the hypocenter, which eliminates the possibility of a steep, south-dipping fault plane. Fitting the S-wave polarization at SERG, 10 km from the epicenter, with a 33° northward dipping plane implies a hypocentral depth greater than 10 km. The north dipping fault plane provides a poor fit to the GPS data at the southern points when a homogeneous elastic half-space is considered: the best fit geodetic model is obtained for a fault shallower by 2 km, assuming the same dip. We show with a two-dimensional model that this depth difference is probably due to the distorting effect of the shallow, low-rigidity sediments of the gulf and of its edges. The best-fit fault model, with dimensions 9 km E–W and 15 km along dip, and a 0.87 m uniform slip, fits InSAR data covering the time of the earthquake. The fault is located about 10 km east-northeast to the Aigion fault, whose surface breaks thus appears as secondary features. The rupture lasted 4 to 5 s, propagating southward and upward on a fault probably outcropping offshore, near the southern edge of the gulf. In the shallowest 4 km, the slip – if any – has not exceeded about 30 cm. This geometry implies a large directivity effect in Aigion, in agreement with the accelerogram aig which shows a short duration (2 s) and a large amplitude (0.5 g) of the direct S acceleration. This unusual low-angle normal faulting may have been favoured by a low-friction, high pore pressure fault zone, or by a rotation of the stress directions due to the possible dip towards the south of the brittle-ductile transition zone. This fault cannot be responsible for the long term topography of the rift, which is controlled by larger normal faults with larger dip angles, implying either a seldom, or a more recently started activity of such low angle faults in the central part of the rift.  相似文献   
989.
East-west-trending Mesozoic magnetic anomalies M2 through M22 have been identified in the northern Mozambique Basin. These anomalies are best matched by sea floor created at 50°S trending N120°E and spreading at a rate of around 1.5 cm/yr. The northward increase in age inferred from the identifications of these anomalies are compatible with observed decrease in the “reliable” heat flow values from 1.4 to 1.1 μcal/cm2 s to the north in the basin. The anomalies terminate in the southern part of the Mozambique Channel against a magnetic quiet zone to the north. Both the Mozambique Basin anomalies and those recently observed off Antarctica are strong evidence in favour of a Gondwanaland reconstruction that places Dronning Maud Land against southern Mozambique, and a late Jurassic or older separation between Africa and Antarctica.  相似文献   
990.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号