首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81573篇
  免费   1164篇
  国内免费   503篇
测绘学   1983篇
大气科学   5761篇
地球物理   15451篇
地质学   31930篇
海洋学   6683篇
天文学   16784篇
综合类   284篇
自然地理   4364篇
  2022年   378篇
  2021年   646篇
  2020年   744篇
  2019年   803篇
  2018年   4015篇
  2017年   3750篇
  2016年   3034篇
  2015年   1056篇
  2014年   1703篇
  2013年   3168篇
  2012年   2826篇
  2011年   4858篇
  2010年   4313篇
  2009年   5005篇
  2008年   4181篇
  2007年   4735篇
  2006年   2515篇
  2005年   2162篇
  2004年   2071篇
  2003年   2111篇
  2002年   1843篇
  2001年   1478篇
  2000年   1410篇
  1999年   1160篇
  1998年   1145篇
  1997年   1206篇
  1996年   989篇
  1995年   982篇
  1994年   903篇
  1993年   777篇
  1992年   750篇
  1991年   728篇
  1990年   777篇
  1989年   695篇
  1988年   670篇
  1987年   720篇
  1986年   714篇
  1985年   879篇
  1984年   901篇
  1983年   928篇
  1982年   859篇
  1981年   787篇
  1980年   795篇
  1979年   694篇
  1978年   637篇
  1977年   646篇
  1976年   591篇
  1975年   579篇
  1974年   573篇
  1973年   587篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
291.
292.
The magnitude and spatial distribution of snow on sea ice are both integral components of the ocean–sea‐ice–atmosphere system. Although there exists a number of algorithms to estimate the snow water equivalent (SWE) on terrestrial surfaces, to date there is no precise method to estimate SWE on sea ice. Physical snow properties and in situ microwave radiometry at 19, 37 and 85 GHz, V and H polarization were collected for a 10‐day period over 20 first‐year sea ice sites. We present and compare the in situ physical, electrical and microwave emission properties of snow over smooth Arctic first‐year sea ice for 19 of the 20 sites sampled. Physical processes creating the observed vertical patterns in the physical and electrical properties are discussed. An algorithm is then developed from the relationship between the SWE and the brightness temperature measured at 37 GHz (55°) H polarization and the air temperature. The multiple regression between these variables is able to account for over 90% of the variability in the measured SWE. This algorithm is validated with a small in situ data set collected during the 1999 field experiment. We then compare our data against the NASA snow thickness algorithm, designed as part of the NASA Earth Enterprise Program. The results indicated a lack of agreement between the NASA algorithm and the algorithm developed here. This lack of agreement is attributed to differences in scale between the Special Sensor Microwave/Imager and surface radiometers and to differences in the Antarctic versus Arctic snow physical and electrical properties. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
293.
Summary ?The NW–SE-trending Yulong porphyry Cu–Mo ore belt, situated in the Sanjiang0 area of eastern Tibet, is approximately 400 km long and 35 to 70 km wide. Complex tectonic and magmatic processes during the Himalayan epoch have given rise to favorable conditions for porphyry-type Cu–Mo mineralization. Porphyry masses of the Himalayan epoch in the Yulong ore belt are distributed in groups along regional NW–SE striking tectonic lineaments. They were emplaced mainly into Triassic and Lower Permian sedimentary-volcanic rocks. K–Ar und U–Pb isotopic datings give an intrusion age range of 57–26 Ma. The porphyries are mainly of biotite monzogranitic and biotite syenogranitic compositions. Geological and geochemical data indicate that the various porphyritic intrusions in the belt had a common or similar magma source, are metaluminous to peraluminous, Nb–Y–Ba-depleted, I-type granitoids, and belong to the high-K calc-alkaline series. Within the Yulong subvolcanic belt a number of porphyry stocks bear typical porphyry type Cu–Mo alteration and mineralization. The most prominent porphyry Co–Mo deposits include Yulong, Malasongduo, Duoxiasongduo, Mangzong and Zhanaga, of which Yulong is one of the largest porphyry Cu (Mo) deposits in China with approximately 8 × 106 tons of contained Cu metal. Hydrothermal alteration at Yulong developed around a biotite–monzogranitic porphyry stock that was emplaced within Upper Triassic limestone, siltstone and mudstone. The earliest alteration was due to the effects of contact metamorphism of the country rocks and alkali metasomatism (potassic alteration) within and around the porphyry body. The alteration of this stage was accompanied by a small amount of disseminated and veinlet Cu–Mo sulfide mineralization. Later alteration–mineralization zones form more or less concentric shells around the potassic zone, around which are distributed a phyllic or quartz–sericite–pyrite zone, a silicification and argillic zone, and a propylitic zone. Fluid inclusion data indicate that three types of fluids were involved in the alteration–mineralization processes: (1) early high temperature (660–420 °C) and high salinity (30–51 wt% NaCl equiv) fluids responsible for the potassic alteration and the earliest disseminated and/or veinlet Cu–Mo sulfide mineralization; (2) intermediate unmixed fluids corresponding to phyllic alteration and most Cu–Mo sulfide mineralization, with salinities of 30–50 wt% NaCl equiv and homogenization temperatures of 460–280 °C; and (3) late low to moderate temperature (300–160 °C) and low salinity (6–13 wt% NaCl equiv) fluids responsible for argillic and propylitic alteration. Hydrogen and oxygen isotopic studies show that the early hydrothermal fluids are of magmatic origin and were succeeded by increasing amounts of meteoric-derived convective waters. Sulfur isotopes also indicate a magmatic source for the sulfur in the early sulfide mineralization, with the increasing addition of sedimentary sulfur outward from the porphyry stock. Received August 29, 2001; revised version accepted May 1, 2002 Published online: November 29, 2002  相似文献   
294.
295.
The collisional instability of the drift wave in a multi-component plasma is investigated. It is shown that when the electron and ion density gradients are different, e.g., due to the presence of a static third component or due to neutral drag effects, the drift mode becomes unstable. The instability is caused by the simultaneous action of the electron collisions with all other plasma species and the spatial difference of the density of the plasma components. This instability may be expected as a natural consequence of the stratification of a multi-component plasma placed in an external gravity field where it can operate for any amount of charge on heavy particles. Therefore it could develop in weakly ionized cold interstellar regions for example, when the heavy particles, i.e. charged grains, are a few tens of Å in size, and carry typically ±1,±2 charge. In the solar atmosphere, it may appear in the weakly ionized photospheric layers due to the convective motion of the neutral component.  相似文献   
296.
Makarov  V.I.  Filippov  B.P. 《Solar physics》2003,214(1):55-63
We have studied the variations of the height of polar crown prominences according to daily observations of the Sun at the Kodaikanal Observatory (India) during 1905–1975. Polar ring filaments at latitudes 60°–80° are related to the polar magnetic field reversal. A double decrease of the height of polar ring filaments was found in the course of their migration from 40°to the poles. We estimated the limiting height of the equilibrium of polar ring filaments from the stability condition of a strong electric current. We found that the transition from large-scale to small-scale ring filaments reduces the critical height of the stability for the prominences. A model of an inverse-polarity filament was used.  相似文献   
297.
Heating occurs in Titan's stratosphere from the absorption of incident solar radiation by methane and aerosols. About 10% of the incident sunlight reaches Titan's surface and causes heating there. Thermal radiation redistributes heat within the atmosphere and cools to space. The resulting vertical temperature profile is stable against convection and a state of radiative equilibrium is established. Equating theoretical and observed temperature profiles enables an empirical determination of the vertical distribution of thermal opacity. A uniformly mixed aerosol is responsible for most of the opacity in the stratosphere, whereas collision-induced absorption of gases is the main contributor in the troposphere. Occasional clouds are observed in the troposphere in spite of the large degrees of methane supersaturation found there. Photochemistry converts CH4 and N2 into more complex hydrocarbons and nitriles in the stratosphere and above. Thin ice clouds of trace organics are formed in the winter and early spring polar regions of the lower stratosphere. Precipitating ice particles serve as condensation sites for supersaturated methane vapor in the troposphere below, resulting in lowered methane degrees of supersaturation in the polar regions. Latitudinal variations of stratospheric temperature are seasonal, and lag instantaneous response to solar irradiation by about one season for two reasons: (1) an actual instantaneous thermal response to a latitudinal distribution of absorbing gases, themselves out of phase with the sun by about one season, and (2) a sluggish dynamical response of the stratosphere to the latitudinal transport of angular momentum, induced by radiative heating and cooling. Mean vertical abundances of stratospheric organics and aerosols are determined primarily by atmospheric chemistry and condensation, whereas latitudinal distributions are more influenced by meridional circulations. In addition to preferential scavenging by precipitating ice particles from above, the polar depletion of supersaturated methane results from periodic scavenging by short-lived tropospheric clouds, coupled with the steady poleward march of the continuously drying atmosphere due to meridional transport.  相似文献   
298.
299.
Ground water contamination was discovered in 1981 in a monitoring well at the Earthline disposal facility near Wilsonville, Illinois. Organic chemicals had migrated at a rate 100 to 1000 times greater than predicted when the site received its permit to operate in 1978. Postulated failure mechanisms included migration through previously unmapped permeable zones, subsidence of an underground mine, organic-chemical and clay-mineral interactions, acid-mine drainage and clay interactions, trench-cover settlement, and erosion.
In this investigation, the Illinois State Geological Survey found the primary reason for the rapid migration: the presence of previously undetermined fractures and joints in glacial till. The inaccurate predictions of hydraulic conductivity were based on laboratory-determined values that did not adequately measure the effects of fractures and joints on the transit time calculations. Field-measured hydraulic conductivity values were generally 10 to 1000 times greater than their laboratory-measured counterparts, thus largely accounting for the discrepancy between predicted and actual migration rates in the transit time calculations. The problem was compounded, however, by the burial of liquid wastes and by trench covers that allowed excess surface runoff to enter the trenches. Organic-chemical and clay-mineral interactions may also have exacerbated the problem in areas where liquid organic wastes were buried.  相似文献   
300.
Mission and hardware constraints make the Cassini radar altimeter working in the beam limited or pulse limited mode dependent on the radar operative mode (Low and High Resolution, respectively), but never allows work in a condition such that the pulsewidth limited circle is much smaller than the beamwidth limited circle. Unfortunately this latter condition is vital for the application of the so-called Brown model widely and successfully used in Earth (ocean) observation missions where the quoted condition is really met. In the paper a new model is discussed which is based on the same general hypotheses of the Brown model but is worked out by means of a different approach which makes it more general and independent of the specific operative conditions. An extension of the new model to take into account large mispointing angles is considered as well based on a series expansion of the Bessel function and on the analysis of the truncation error. Finally a comparison with the classical Brown model is discussed too.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号