首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   81573篇
  免费   1164篇
  国内免费   503篇
测绘学   1983篇
大气科学   5761篇
地球物理   15451篇
地质学   31930篇
海洋学   6683篇
天文学   16784篇
综合类   284篇
自然地理   4364篇
  2022年   378篇
  2021年   646篇
  2020年   744篇
  2019年   803篇
  2018年   4015篇
  2017年   3750篇
  2016年   3034篇
  2015年   1056篇
  2014年   1703篇
  2013年   3168篇
  2012年   2826篇
  2011年   4858篇
  2010年   4313篇
  2009年   5005篇
  2008年   4181篇
  2007年   4735篇
  2006年   2515篇
  2005年   2162篇
  2004年   2071篇
  2003年   2111篇
  2002年   1843篇
  2001年   1478篇
  2000年   1410篇
  1999年   1160篇
  1998年   1145篇
  1997年   1206篇
  1996年   989篇
  1995年   982篇
  1994年   903篇
  1993年   777篇
  1992年   750篇
  1991年   728篇
  1990年   777篇
  1989年   695篇
  1988年   670篇
  1987年   720篇
  1986年   714篇
  1985年   879篇
  1984年   901篇
  1983年   928篇
  1982年   859篇
  1981年   787篇
  1980年   795篇
  1979年   694篇
  1978年   637篇
  1977年   646篇
  1976年   591篇
  1975年   579篇
  1974年   573篇
  1973年   587篇
排序方式: 共有10000条查询结果,搜索用时 921 毫秒
251.
Long-range sidescan sonar can be used to map sediment distributions over wide expanses of deep ocean floor. Seven acoustic facies that arise from differing sediment or rock types have been mapped over the low-relief Saharan continental rise and Madeira abyssal plain. These have been calibrated with sampling, profiling and camera studies and the facies can be traced confidently on a regional scale using the sidescan data. The mapping of the sediment distribution shows that a complex interplay of turbidity current and debris flow processes can occur at a continental rise/abysaal plain transition over 1000 km from the nearest continental slope.  相似文献   
252.
The instantaneous structure of planetary exospheres is determined by the time history of energy dissipation, chemical, and transport processes operative during a prior time interval set by intrinsic atmospheric time scales. The complex combination of diurnal and magnetospheric activity modulations imposed on the Earth's upper atmosphere no doubt produce an equally complex response, especially in hydrogen, which escapes continuously at exospheric temperatures. Vidal-Madjar and Thomas (1978) have discussed some of the persistent large scale structure which is evident in satellite ultraviolet observations of hydrogen, noting in particular a depletion at high latitudes which is further discussed by Thomas and Vidal-Madjar (1978). The latter authors discussed various causes of the H density depletion, including local neutral temperature enhancements and enhanced escape rates due to polar wind H+ plasma flow or high latitude ion heating followed by charge exchange. We have reexamined the enhancement of neutral escape by plasma effects including the recently observed phenomenon of low altitude transverse ion acceleration. We find that, while significant fluxes of neutral H should be produced by this phenomenon in the auroral zone, this process is probably insufficient to account for the observed polar depletion. Instead, the recent exospheric temperature measurements from the Dynamics Explorer-2 spacecraft suggest that neutral heating in and near the high latitude cusp may be the major contributor to depleted atomic hydrogen densities at high latitudes.  相似文献   
253.
Photometric observations of EX Hya inB andVfilters are reported. The 67 min modulation of the light curve also is found to be in good agreement with the results of earlier studies. The (B-V) colour variation with respect to the 67 min variation is found to be opposite to those of typical colour variation during hump/superhump activity in other dwarf novae. The model of an intermediate polar is discussed.  相似文献   
254.
The solar differential rotation: Present status of observations   总被引:1,自引:0,他引:1  
E. H. Schröter 《Solar physics》1985,100(1-2):141-169
The present status of observations regarding the solar differential rotation is reviewed from contributions published in the last two decades. The paper does not deal with the theory; it mentions theoretical aspects only where they are needed to guide and to understand observational efforts and results.Mitteilungen aus dem Kiepenheuer-Institut Nr. 250.  相似文献   
255.
The study of the evolution of planetary systems, primarily of the Solar System, is one of the basic problems of celestial mechanics. The stability of motion of giant planets on cosmogonic time scales was established by numerical and analytical methods, but the question about the evolution of orbits of terrestrial planets and arbitrary solar-type planetary systems remained open. This work initiates a series of papers allowing one to advance in solving the problem of the evolution of the solar-type planetary systems on cosmogonic time scales by using powerful analytical tools. In the first paper of this series, we choose the optimum reference system and obtain the Poisson series expansion of the Hamiltonian of the problem in all Keplerian elements. We propose to use the integral representation of the corresponding coefficients or the Poisson processor means instead of conventionally addressing any possible special functions. This approach extremely simplifies the algorithm. The next paper of this series deals with the calculation of the expansion coefficients.  相似文献   
256.
257.
The reflectance coefficient of the regolith layer of celestial bodies has been studied in relation to the physical properties of regolith particles (size, refractive index, and packing density) on the basis of an accurate numerical radiative-transfer algorithm for a semi-infinite flat layer. Using the geometric-optics approximation, we have found that a shape mixture of randomly oriented spheroids can successfully model the single-scattering phase function of independent soil grains. In order to take into account the effect of packing density in a regolith layer, the concept of the so-called static structure factor was used. The main effect of increasing packing density is to suppress the forward-scattering peak of the phase function and to increase the albedo of the reflecting surface. We also investigated the influence of fine dust on the reflected light. An addition of small particles not only increases the surface albedo, but also changes the brightness profile and enhances the backscattering. Although the problem of unique solution, which is inherent in the retrieval of the properties of a medium from the measurements of the intensity of light scattered by this media, cannot be removed in the proposed model, the procedure used here, in contrast to widely used approximations, allows us to fit observational data with a set of real characteristics of the regolith. Semiempirical approaches are able to fit the measurements well with a small number of free parameters, but they do not explicitly contain crucial physical characteristics of the regolith such as grain sizes or the refractive index. We compared the numerical solution of the radiative-transfer equation with the Hapke approximation, which is most often used by investigators. The errors introduced by the Hapke model are small only for near-isotropic scattering by isolated particles. However, independent regolith grains are known to scatter light mainly in the forward direction.  相似文献   
258.
Knowles  S.H.  Picone  J.M.  Thonnard  S.E.  Nicholas  A.C. 《Solar physics》2001,204(1-2):387-397
Geomagnetic storms driven by solar eruptions are known to have significant effects on the total density of the upper atmosphere in the altitude range 250–1000 km. This in turn causes a measurable effect on the orbits of resident space objects in this altitude range. We analyzed a sample of these orbits, both from sensor data and from orbital element sets, during the period surrounding the 14 July 2000 solar activity. We present information concerning the effects of this event on the orbits of resident space objects and how well accepted atmospheric models were able to represent it. As part of this analysis, we describe a technique for extracting atmospheric density information from orbital element sets. On daily time scales, the effect of geomagnetic activity appears to be more important than that of prompt radiation. However, the limitations in time and amplitude quantization of the accepted solar indices are evident. A limited comparison is also made with previous solar storm events.  相似文献   
259.
We outline the results of a two-dimensional (2D) fit to the light distribution of early-type galaxies belonging to a complete volume-limited sample and discuss briefly the significant correlations among the structural parameters. In particular we reconfirm that the lack of structural homology is probably a characteristic of hot stellar systems. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
260.
Differential equations describing the tidal evolution of the earth's rotation and of the lunar orbital motion are presented in a simple close form. The equations differ in form for orbits fixed to the terrestrial equator and for orbits with the nodes precessing along the ecliptic due to solar perturbations. Analytical considerations show that if the contemporary lunar orbit were equatorial the evolution would develop from an unstable geosynchronous orbit of the period about 4.42 h (in the past) to a stable geosynchronous orbit of the period about 44.8 days (in the future). It is also demonstrated that at the contemporary epoch the orbital plane of the fictitious equatorial moon would be unstable in the Liapunov's sense, being asymptotically stable at early stages of the evolution. Evolution of the currently near-ecliptical lunar orbit and of the terrestrial rotation is traced backward in time by numerical integration of the evolutional equations. It is confirmed that about 1.8 billion years ago a critical phase of the evolution took place when the equatorial inclination of the moon reached small values and the moon was in a near vicinity of the earth. Before the critical epoch t cr two types of the evolution are possible, which at present cannot be unambiguously distinguished with the help of the purely dynamical considerations. In the scenario that seems to be the most realistic from the physical point of view, the evolution also has started from a geosynchronous equatorial lunar orbit of the period 4.19 h. At t < t cr the lunar orbit has been fixed to the precessing terrestrial equator by strong perturbations from the earth's flattening and by tidal effects; at the critical epoch the solar perturbations begin to dominate and transfer the moon to its contemporary near-ecliptical orbit which evolves now to the stable geosynchronous state. Probably this scenario is in favour of the Darwin's hypothesis about originating the moon by its separation from the earth. Too much short time scale of the evolution in this model might be enlarged if the dissipative Q factor had somewhat larger values in the past than in the present epoch. Values of the length of day and the length of month, estimated from paleontological data, are confronted with the results of the developed model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号