首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43625篇
  免费   1279篇
  国内免费   390篇
测绘学   965篇
大气科学   3134篇
地球物理   9510篇
地质学   16030篇
海洋学   3800篇
天文学   9018篇
综合类   270篇
自然地理   2567篇
  2022年   263篇
  2021年   454篇
  2020年   503篇
  2019年   585篇
  2018年   1430篇
  2017年   1367篇
  2016年   1321篇
  2015年   727篇
  2014年   1129篇
  2013年   1962篇
  2012年   1789篇
  2011年   2026篇
  2010年   1550篇
  2009年   1922篇
  2008年   1745篇
  2007年   1795篇
  2006年   1675篇
  2005年   1862篇
  2004年   1900篇
  2003年   1735篇
  2002年   1163篇
  2001年   935篇
  2000年   836篇
  1999年   736篇
  1998年   720篇
  1997年   738篇
  1996年   597篇
  1995年   572篇
  1994年   500篇
  1993年   453篇
  1992年   408篇
  1991年   430篇
  1990年   445篇
  1989年   395篇
  1988年   369篇
  1987年   402篇
  1986年   415篇
  1985年   508篇
  1984年   545篇
  1983年   542篇
  1982年   496篇
  1981年   455篇
  1980年   432篇
  1979年   408篇
  1978年   376篇
  1977年   385篇
  1976年   346篇
  1975年   357篇
  1974年   340篇
  1973年   372篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Methanol has been recognised as an important constituent of the background atmosphere, but little is known about its overall cycle in the biosphere/atmosphere system. A model is proposed for the production and emission to the atmosphere of methanol by flowering plants based on plant structure and metabolic properties, particularly the demethylation of pectin in the primary cell walls. This model provides a framework to extend seven sets of measurements of methanol emission rates to the global terrestrial biosphere. A global rate of release of methanol from plants to the atmosphere of 100 Tg y–1 is calculated. A separate model of the global cycle of methanol is constructed involving emissions from plant growth and decay, atmospheric and oceanic chemical production, biomass burning and industrial production. Removal processes occur through hydroxyl radical attack in the atmosphere, in clouds and oceans, and wet and dry deposition. The model successfully reproduces the methanol concentrations in the continental boundary-layer and the free atmosphere, including the inter-hemispheric gradient in the free atmosphere. The model demonstrates a new concept in global biogeochemistry, the coupling of plant cell growth with the global atmospheric concentration of methanol. The model indicates that the ocean provides a storage reservoir capable of holding at least 66 times more methanol than the atmosphere. The ocean surface layer reservoir essentially buffers the atmospheric concentration of methanol, providing a physically based smoothing mechanism with a time constant of the order of one year.  相似文献   
992.
A large aperture scintillometer (LAS) andradio wave scintillometer (RWS)were installed over a heterogeneous areato test the applicability of the scintillation method.The heterogeneity in the area, whichconsisted of many plots, was mainly caused bydifferences in thermal properties ofthe crops; the variations in theaerodynamic roughness lengthwere small. The water vapour fluxesderived from the combined LAS-RWSsystem, also known as the two-wavelengthmethod, agreed fairly well with the aggregatedwater vapour fluxes derived from in-situeddy covariance measurements. The water vapourfluxes derived from a stand-alone LASare also presented. It was found that a single LASand an estimate of the area averagedavailable energy (using a simple parameterisationscheme) can provide also reasonablearea-averaged water vapour fluxes.  相似文献   
993.
Summary The Betts-Miller and the Kain-Fritsch schemes are two of the many approaches to convective parameterization available to modelers. In the case of hurricane Irene (1999), the choice of parameterization markedly impacted the modeled track and structure of the hurricane and its subsequent extratropical transition. Specifically, in model runs using Betts-Miller, Irene recurved too early, causing the storm to weaken over the cool open ocean, delaying its transition, and changing the character of the storm. The Kain-Fritsch scheme more accurately reproduced the track of Irene and, hence, its interaction with upper-level features that caused extratropical transition and post-transition intensification. The two parameterizations produce different characteristic vertical warming profiles; the differences in warming are related to the structural differences in the simulated storm, affecting the hurricane response to its environment. Received October 13, 2001 Revised December 23, 2001  相似文献   
994.
The surface heat flux feedback in the Atlantic Ocean is estimated in the ECHAM4/OPA8 coupled model. The net heat flux feedback is negative everywhere, mostly ranging between 15 and 35 W m-2 K-1, but reaching up to 50 W m-2 K-1 in the tropics, so that it damps existing sea surface temperature anomalies. The bulk of it is due to the turbulent flux, although in the tropics the radiation feedback also strongly contributes. The turbulent heat flux feedback is strongest in fall and winter at extra-tropical latitudes, and in spring and summer near the equator. At mid-latitudes, the radiation feedback remains small in each season, but it can be strongly negative in parts of the tropics. At extra-tropical latitudes the model feedback compares rather well with estimates derived in Part I from the COADS observations and the NCEP reanalysis, but in the tropical Atlantic the negative heat flux feedback is much too strong. An indirect estimation of the model heat flux feedback is also attempted in regions of small mean surface current, based on the difference in decay time of sea surface temperature and salinity anomalies. The inferred negative heat flux feedback is qualitatively correct, but the seasonal changes in the mixed-layer depth are too large for the method to be accurate at high latitudes.  相似文献   
995.
Summary The error structure of radar measurements should be accurately known in order to provide reliable estimates for a number of quantitative meteorological applications, from rainfall rate estimation to cloud microphysics. The aim of this paper is to give a detailed characterization of Z H and Z DR measurements obtained by the weather radar of Fossalon di Grado (Gorizia, Italy). Vertical-looking observations are used to determine the system bias on differential reflectivity and to estimate the measurement error on both Z H and Z DR in the rain medium. It is estimated that no bias is affecting Z DR and the accuracy of Z H and Z DR is 0.8 and 0.1 dB, respectively. A similar evaluation is done in the rain medium at larger ranges with the antenna pointing at low elevation angles. The long time stability of the absolute reflectivity calibration is also established by radar-rain gage inter-comparison over almost 200 hours of precipitation data collected during nearly two years. Received June 21, 2001 Revised November 13, 2001  相似文献   
996.
During an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (IAMAS-IUGG), 10 instruments for aerosol number concentration measurement were studied, covering a wide range of methods based on various different measuring principles. In order to investigate the detection limits of the instruments considered with respect to particle size, simultaneous number concentration measurements were performed for monodispersed aerosols with particle sizes ranging from 1.5 to 50 nm diameter and various compositions.The instruments considered show quite different response characteristics, apparently related to the different vapors used in the various counters to enlarge the particles to an optically detectable size. A strong dependence of the 50% cutoff diameter on the particle composition in correlation with the type of vapor used in the specific instrument was found. An enhanced detection efficiency for ultrafine hygroscopic sodium chloride aerosols was observed with water operated systems, an analogous trend was found for n-butanol operated systems with nonhygroscopic silver and tungsten oxide particles.  相似文献   
997.
The electrical aerosol spectrometer (EAS) of the parallel measuring principle at Tartu University is an efficient instrument for rapid measurement of the unstable size spectrum of aerosol particles. The measuring range from 10 nm to 10 μm is achieved by simultaneously using a pair of differential mobility analyzers with two different particle chargers. The particle spectrum is calculated and measurement errors are estimated in real time by using a least-squares method. Experimental calibration ensures reliability of measurement. The instrument is well suited for continuous monitoring of atmospheric aerosol.  相似文献   
998.
The chemical compositions of the atmospheres of six metal-poor stars are analyzed. Spectra with signal-to-noise ratios of no less than 100 and a resolution of R≈17 000 were obtained using the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The abundances of Li, O, α-process elements (Mg, Si, Ca, Ti), Na, K, Sc, iron-peak elements (Cr, Mn, Fe, Ni, Cu, Zn), and s-process elements (Y, Ba) are derived. The star G251-54 ([Fe/H]=?1.55, T eff=5541 K, logg=3.58) is deficient in some elements compared to both stars with similar metallicities and the Sun. The atmosphere of G251-54 has the following elemental abundances relative to iron: [O/Fe]=+0.47, [α/Fe]≈?0.3, [Na/Fe]=?0.60, [Sc/Fe]=?0.57, [Cr, Ni, Fe]≈0, [Zn/Fe]=+0.16, [Cu/Fe]=?0.66, [Y/Fe]=?0.70, and [Ba/Fe]=?1.35. The remaining five stars have metallicities in the range ?1.6<[Fe/H]相似文献   
999.
1000.
The submarine Haakon Mosby mud volcano was studied in detail during several cruises, resulting in the collection of an abundant and diverse lithological material. Comprehensive field and laboratory studies made it possible to identify different types of sediments with specific granulometric and pelite fraction (<0.005 mm) compositions, as well as the regularity of their spatial distribution relative to various morphostructural zones of the mud volcano.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号