首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56570篇
  免费   928篇
  国内免费   357篇
测绘学   1086篇
大气科学   3543篇
地球物理   11133篇
地质学   20855篇
海洋学   5186篇
天文学   12900篇
综合类   122篇
自然地理   3030篇
  2022年   439篇
  2021年   739篇
  2020年   767篇
  2019年   906篇
  2018年   1664篇
  2017年   1606篇
  2016年   1722篇
  2015年   865篇
  2014年   1611篇
  2013年   2868篇
  2012年   1865篇
  2011年   2442篇
  2010年   2234篇
  2009年   2740篇
  2008年   2406篇
  2007年   2580篇
  2006年   2366篇
  2005年   1520篇
  2004年   1504篇
  2003年   1557篇
  2002年   1447篇
  2001年   1295篇
  2000年   1115篇
  1999年   1000篇
  1998年   979篇
  1997年   987篇
  1996年   804篇
  1995年   794篇
  1994年   710篇
  1993年   606篇
  1992年   585篇
  1991年   576篇
  1990年   597篇
  1989年   556篇
  1988年   506篇
  1987年   559篇
  1986年   572篇
  1985年   676篇
  1984年   719篇
  1983年   710篇
  1982年   652篇
  1981年   603篇
  1980年   568篇
  1979年   566篇
  1978年   512篇
  1977年   510篇
  1976年   461篇
  1975年   471篇
  1974年   447篇
  1973年   514篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
401.
We have collected ∼500 stream waters and associated bed-load sediments over an ∼400 km2 region of Eastern Canada and analyzed these samples for Fe, Mn, and the rare earth elements (REE + Y). In addition to analyzing the stream sediments by total digestion (multi-acid dissolution with metaborate fusion), we also leached the sediments with 0.25 M hydroxylamine hydrochloride (in 0.05 M HCl), to determine the REE + Y associated with amorphous Fe- and Mn-oxyhydroxide phases. We are thus able to partition the REE into “dissolved” (<0.45 μm), labile (hydroxylamine) and detrital sediment fractions to investigate REE fractionation, and in particular, with respect to the development of Ce and Eu anomalies in oxygenated surface environments. Surface waters are typically LREE depleted ([La/Sm]NASC ranges from 0.16 to 5.84, average = 0.604, n = 410; where the REE are normalized to the North America Shale Composite), have strongly negative Ce anomalies ([Ce/Ce]NASC ranges from 0.02 to 1.25, average = 0.277, n = 354), and commonly have positive Eu anomalies ([Eu/Eu]NASC ranges from 0.295 to 1.77, average = 0.764, n = 84). In contrast, the total sediment have flatter REE + Y patterns relative to NASC ([La/Sm]NASC ranges from 0.352 to 1.12, average = 0.778, n = 451) and are slightly middle REE enriched ([Gd/Yb]NASC ranges from 0.55 to 3.75, average = 1.42). Most total sediments have negative Ce and Eu anomalies ([Ce/Ce]NASC ranges from 0.097 to 2.12, average = 0.799 and [Eu/Eu]NASC ranges from 0.39 to 1.43, average = 0.802). The partial extraction sediments are commonly less LREE depleted than the total sediments ([La/Sm]NASC ranges from 0.24 to 3.31, average = 0.901, n = 4537), more MREE enriched ([Gd/Yb]NASC ranges from 0.765 to 6.28, average = 1.97) and Ce and Eu anomalies (negative and positive) are more pronounced.The partial extraction recovered, on average ∼20% of the Fe in the total sediment, ∼80% of the Mn, and 21-29% of the REEs (Ce = 19% and Y = 32%). Comparison between REEs in water, partial extraction and total sediment analyses indicates that REEs + Y in the stream sediments have two primary sources, the host lithologies (i.e., mechanical dispersion) and hydromorphically transported (the labile fraction). Furthermore, Eu appears to be more mobile than the other REE, whereas Ce is preferentially removed from solution and accumulates in the stream sediments in a less labile form than the other REEs + Y. Despite poor statistical correlations between the REEs + Y and Mn in either the total sediment or partial extractions, based on apparent distribution coefficients and the pH of the stream waters, we suggest that either sediment organic matter and/or possibly δ-MnO2/FeOOH are likely the predominant sinks for Ce, and to a lesser extent the other REE, in the stream sediments.  相似文献   
402.
The Mo stable isotope system is being applied to study changes in ocean redox. Such applications implicitly assume that Mo isotope fractionation in aqueous systems is relatively insensitive to frequently changing environmental variables such as temperature (T) and ionic strength (I). A major driver of fractionation is the adsorption of Mo to Mn oxyhydroxide surfaces [Barling J. and Anbar A. D. (2004) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet. Sci. Lett.217(3-4), 315-329]. Here, we report the results of experiments that determine the extent to which Mo isotope fractionation during adsorption of Mo to the Mn oxyhydroxide mineral birnessite is sensitive to T and I. The results are compared to new predictions from quantum chemical computations. We measured fractionation from 1 to 50 °C at I = 0.1 m and found that Δ97/95Modissolved-adsorbed varies from 1.9‰ to 1.6‰ over this temperature range. Experiments were also performed at 25 °C in synthetic seawater (I = 0.7); fractionation at this condition was the same within analytical error as in low ionic strength experiments. These findings confirm that the Mo isotope fractionation during adsorption to Mn oxyhydroxides is relatively insensitive to variations and T and I over environmentally relevant ranges. To relate these findings to potential mechanisms of Mo isotope fractionation, we also report results for density functional theory computations of the fractionation between and various possible structures of molybdic acid as a function of temperature. Because no plausible species fractionates from with a magnitude matching the experiments, we are left with three possibilities to explain the fractionation: (1) solvation effects on the vibrational frequencies of aqueous species considered thus far are significant, such that our calculations in vacuo yield inaccurate fractionations; (2) a trace aqueous species not yet considered fractionates from and then adsorbs to birnessite; or (3) a surface complex not present in solution forms on birnessite in which Mo is not tetrahedrally coordinated. Our findings help validate assumptions underlying paleoceanographic applications of the Mo isotope system and also lead us closer to understanding the mechanism of isotope fractionation during adsorption of Mo to Mn oxyhydroxides.  相似文献   
403.
Lead concentrations and isotope ratios measured in river water colloids and streambed sediment samples along 426 km of the Sacramento River, California reveal that the influence of lead from the historical mining of massive sulfide deposits in the West Shasta Cu-mining district (at the headwaters of the Sacramento River) is confined to a 60 km stretch of river immediately downstream of that mining region, whereas inputs from past leaded gasoline emissions and historical hydraulic Au-mining in the Sierra Nevadan foothills are the dominant lead sources in the remaining 370 km of the river. Binary mixing calculations suggest that more than 50% of the lead in the Sacramento River outside of the region of influence of the West Shasta Cu-mining district is derived from past depositions of leaded gasoline emissions. This predominance is the first direct documentation of the geographic extent of gasoline lead persistence throughout a large riparian system (>160,000 km2) and corroborates previous observations based on samples taken at the mouth of the Sacramento River. In addition, new analyses of sediment samples from the hydraulic gold mines of the Sierra Nevada foothills confirm the present-day fluxes into the Sacramento River of contaminant metals derived from historical hydraulic Au-mining that occurred during the latter half of the 19th and early part of the 20th centuries. These fluxes occur predominantly during periods of elevated river discharge associated with heavy winter precipitation in northern California. In the broadest context, the study demonstrates the potential for altered precipitation patterns resulting from climate change to affect the mobility and transport of soil-bound contaminants in the surface environment.  相似文献   
404.
Our ability to identify thin non-stoichiometric and amorphous layers beneath mineral surfaces has been tested by undertaking X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) work on alkali feldspars from pH 1 dissolution experiments. The outcomes of this work were used to help interpret XPS and TEM results from alkali feldspars weathered for <10,000 years in soils overlying the Shap Granite (north-west England). The chemistry of effluent solutions indicates that silica-rich layers a few nanometers in thickness formed during the pH 1 experiments. These layers can be successfully identified by XPS and have lower Al/Si, Na/Si, K/Si and Ca/Si values than the outermost ∼9 nm of unweathered controls. Development of Al-Si non-stoichiometry is coupled with loss of crystal structure to produce amorphous layers that are identifiable by TEM where >∼2.5 nm thick, whereas the crystallinity of albite is retained despite leaching of Na to depths of tens to hundreds on nanometers. Integration of XPS data over the outermost 6-9 nm of naturally weathered Shap feldspars shows that they have stoichiometric Al/Si and K/Si ratios, which is consistent with findings of previous TEM work on the same material that they lack amorphous layers. There is some XPS evidence for loss of K from the outermost couple of nanometers of Shap orthoclase, and the possibility of leaching of Na from albite to greater depths cannot be excluded using the XPS or TEM results. This study demonstrates that the leached layer model, as formulated from laboratory experiments, is inapplicable to the weathering of alkali feldspars within acidic soils, which is an essentially stoichiometric reaction.  相似文献   
405.
The speciation of Nd(III), Sm(III), and Er(III) in sulfate-bearing solutions has been determined spectrophotometrically at temperatures from 25 to 250 °C and a pressure of 100 bars. The data obtained earlier on the speciation of Nd in sulfate-bearing solutions (Migdisov et al., 2006) have been re-evaluated and corrected using a more appropriate activity model and are compared with the corresponding data for Sm(III) and Er(III) and new data for Nd(III). Based on this comparison, the dominant species in the solution are interpreted to be and , with the latter complex increasing in importance at higher temperature. Equilibrium constants were calculated for the following reactions:
  相似文献   
406.
We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As−1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (−1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black shale formations.  相似文献   
407.
The petroleum resource potential is considered for the Atlantic, West Pacific, and East Pacific types of deepwater continental margins. The most considerable energy resources are concentrated at the Atlantic-type passive margins in the zone transitional to the ocean. The less studied continental slope of backarc seas of the generally active margins of the West Pacific type is currently not so rich in discoveries as the Atlantic-type margin, but is not devoid of certain expectations. In some of their parameters, the margins bounded by continental slopes may be regarded as analogs of classical passive margins. At the margins of the East Pacific type, the petroleum potential is solely confined to transform segments. In the shelf-continental-slope basins of the rift and pull-apart nature, petroleum fields occur largely in the upper fan complex, and to a lesser extent in the lower graben (rift) complex. In light of world experience, the shelf-continental-slope basins of the Arctic and Pacific margins of Russia are evaluated as highly promising.  相似文献   
408.
In distribution areas of the Pekul’neiveem and Chirynai formations customary distinguishable in the Koryak Upland, complicated tectonostratigraphic units are composed of alternating thrust sheets of different lithologic composition and age, which are juxtaposed because of widespread thrust faulting, as is proved by the radiolarian analysis. Nineteen radiolarian assemblages of different age are first established here in the Lower Jurassic-Hauterivian succession of siliceous-volcanogenic sediments. In the Lower Jurassic interval, the lower and upper Hettangian, lower and upper Sinemurian, and Pliensbachian beds are recognized. Paleontological characterization is also presented for the Aalenian (or Toarcian?-Aalenian), upper Bajocian, lower and upper Bathonian, and Callovian beds of the Middle Jurassic. Within the Upper Jurassic, the Oxfordian-early Kimmeridgian, late Kimmeridgian-early Tithonian, Tithonian, and late Tithonian-early Berriasian radiolarian assemblages are distinguished. The late Berriasian-early Valanginian, middle-late Valanginian, and Hauterivian radiolarian assemblages are first recognized or compositionally revised. Radiolarians and lithofacies data are used to correlate the tectonostratigraphic units and individualize the jasper-alkali basaltic (lower Hettangian), chert-terrigenous (Hettangian-Sinemurian), jasper-cherty (Pliensbachian-Aalenian), jasper (Bajocian-Hauterivian), jasper-basaltic (upper Bajocian-Valanginian), Fe-Ti basaltic (upper Bajocian-Bathonian), tuffitejasper-basaltic (Bathonian-Hauterivian), and terrigenous-volcanogenic (Bajocian-Valanginian) sequences. The correlation results are extrapolated into other continental areas flanking the Pacific, i.e., to the western Kamchatka, northern and northwestern coastal areas of the Sea of Okhotsk, where the analogous radiolarian assemblages are characteristic of comparable allochthonous units of terrigenous-siliceous-volcanogenic sediments.  相似文献   
409.
The results of radiolarian analysis confirm the Campanian-Maastrichtian age of the Malokuril’skaya Formation in the Shikotan Island. The Campanian-Maastrichtian age of the formation is implied simultaneously by radiolarians and inoceramids. The studied Campanian and Campanian-Maastrichtian radiolarian assemblages include abundant specimens representing genus Prunobrachium, characteristic of which was bipolar distribution in cold-water to temperate basins. The new occurrence site of prunobrachids is established at the latitude of 43°N, the Far East of Russia.  相似文献   
410.
Taxonomic composition and distribution of planktonic foraminifers are studied in section of Core GC-11 that penetrated through Upper Quaternary sediments of the Bowers Ridge western slope, the southern Bering Sea. As is shown, structure of foraminiferal assemblage and productivity have varied substantially during the last 32000 calendar years in response to changes in surface water temperatures and water mass circulation in the northern part of the Pacific, the Bering Sea included. The productivity was maximal during deglaciation epoch, being notably lower in the Holocene and minimal at the glaciation time.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号