首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109310篇
  免费   1594篇
  国内免费   716篇
测绘学   2362篇
大气科学   7293篇
地球物理   21238篇
地质学   39147篇
海洋学   9869篇
天文学   24974篇
综合类   289篇
自然地理   6448篇
  2022年   711篇
  2021年   1209篇
  2020年   1341篇
  2019年   1487篇
  2018年   2964篇
  2017年   2793篇
  2016年   3250篇
  2015年   1714篇
  2014年   3167篇
  2013年   5591篇
  2012年   3473篇
  2011年   4576篇
  2010年   4149篇
  2009年   5244篇
  2008年   4630篇
  2007年   4769篇
  2006年   4374篇
  2005年   3174篇
  2004年   3132篇
  2003年   2990篇
  2002年   2885篇
  2001年   2502篇
  2000年   2457篇
  1999年   1978篇
  1998年   2061篇
  1997年   1932篇
  1996年   1678篇
  1995年   1629篇
  1994年   1397篇
  1993年   1343篇
  1992年   1230篇
  1991年   1277篇
  1990年   1269篇
  1989年   1100篇
  1988年   1023篇
  1987年   1173篇
  1986年   1085篇
  1985年   1330篇
  1984年   1481篇
  1983年   1437篇
  1982年   1330篇
  1981年   1247篇
  1980年   1122篇
  1979年   1064篇
  1978年   1010篇
  1977年   933篇
  1976年   884篇
  1975年   878篇
  1974年   855篇
  1973年   946篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
It is often necessary to locate the original quarry which supplied the stone for a particular historical building. This stones could be used for future restoration work and for testing in the laboratory (artificial aging tests, physical properties determination, control of the efficacy of conservation treatments, etc.). Generally, reviewing historical documentation gives information about the geographical setting of quarries and location of the stones in the monument, but this information needs to be proved by field and laboratory studies. The comparative study of stone from quarries and monuments should basically include the following: (1) mineralogical and petrographical studies; (2) the chemical analysis of major, minor and trace elements; (3)stable isotopes determinations; (4) physical properties of quarry materials and unweathered building stone (water absorption, ultrasound transmission velocity, porosity and porous system, density, bulk density, compressive strength, etc.). This methodology was applied to Málaga Cathedral stones represented in the main façade, towers, and the western zone of the terrace, which, according to historical literature, came from Almayate (Miocene–Pliocene limestones) and Cerro Coronado (Permotriassic sandstone) in Málaga. The conclusion of the comparative study carried out on quarries and building stones was consistent with the information available from the historical documentation.  相似文献   
992.
通过对前人建议的26个生物地层标志化石存在与否的简约分析,中亚与亚洲中部晚白垩世的陆生脊椎动物组合的相对层位得到了更清楚的揭示。此区最古老的组合是乌兹别克斯坦克孜勒库姆沙漠的Khodzhakul组合(早塞诺曼期),其次为蒙古戈壁沙漠东部BaynShire组的下部和上部的组合(塞诺曼期至桑顿期)。中国内蒙古二连达布苏动物群与中亚的土伦期—桑顿期动物群属于同一类群,因为它们均具龟鳖类Khunnuchelys,前者时代可能为桑顿期。三个中亚的组合(Bissekty、Yalovach和Bostobe组合)中有两个地方性的鳄形类(Kansajsuchus和Tadzhikosuchus)和一个出现于戈壁沙漠的鳄形类(Shamosuchus)化石。戈壁沙漠的坎潘期至马斯特里赫特期组合与北美同期动物群为同一类群。Djadokhta组与BarunGoyot组的坎潘期脊椎动物组合具有高度的地方性,并反应了半干旱的古环境。产自Nemegt组的组合生存于比较潮湿的环境。在组成上,这一组合与其他河流相沉积环境(Bissekty、二连达布苏以及北美Judithian期和Lancian期的组合)相似。具顶饰的鸭嘴龙Saurolophus的存在,支持了Nemegt组合为马斯特里赫特期时代。戈壁沙漠的这三个组合(Djadokhta、Barun Goyot和Nemegt组合)被归为一类,因为它们共同拥有地方性的龟类Mongolemys和兽脚亚目的小驰龙类。亚洲中部和北美的坎潘期至马斯特里赫特期组合与亚洲更加古老的组合不同在于存有暴龙科、肿头龙亚目和鸭嘴龙科。在中亚,由于地区性的海侵,这一时间段内的陆生脊椎动物组合多不清楚。  相似文献   
993.
To understand the petrogenesis of peraluminous granites syntectonicto the Dorsal de Canguçu Transcurrent Shear Zone in theSul-rio-grandense Shield, Brazil, melting experiments were performedon one of the potential protoliths, a cordierite-bearing semi-peliticmetasedimentary gneiss (PE-1). Experiments were conducted atpressures of 5, 10 and 15 kbar, at temperatures of 700–900°C,and under fluid-absent and 5% H2O-present conditions. The experimentsshow that fluid-absent melting begins at near-solidus conditions,around 700°C, promoted by participation of retrogressivephengitic muscovite in the reaction Mus + Kf ± Qz = melt± Fe–Ti oxide ± Als, producing a very smallamount of melt (<9%) with widely ranging composition. Allhypersolidus experiments (>800°C) produced S-type graniticmelts promoted by participation of biotite or cordierite inthe reactions Bio + Pl + Crd + Qz = Px + Fe–Ti oxide +melt at 5 kbar, and Bio + Pl + Crd ± Qz = Grt + Als ±Kf + melt at 10 and 15 kbar, both producing a high amount ofmelt (10–63% by volume). The melt compositions obtainedat 900°C and 15 kbar under fluid-absent conditions, promotedby biotite or cordierite breakdown, are similar to the syntectonicgranites. However, it is unlikely that the granites were formedat this pressure (corresponding to a depth of melting of  相似文献   
994.
Data on the composition of the absorbed complex of riverine solid substances and its transformation in marine environments obtained from field observations and experimental investigations are systematized and generalized. Average values of the specific surface of the riverine suspended particulates (~20 m2/g) and the total exchange capacity of solid substances of the continental runoff (~28 mg-equiv/100 g or 280 g-equiv/t of the transported terrigenous material) are determined. It is shown that the composition of the absorbed complex in the riverine suspended particulates, as well as bottom sediments of rivers and inland water bodies differs principally from that of bottom sediments in oceans and seas: Ca dominates in the first case; Na, in the second case. When the riverine terrigenous material enters oceans and seas, the composition of the absorbed complex is subjected to the ion-exchange transformation reflected in the replacement of exchange Ca (~80%) mainly by Na and also by K and Mg of seawater. This process is responsible for the influx of 45.5 Mt/yr of dissolved Ca to ocean and the removal of 37.3, 12.8, and 3.9 Mt/yr of Na, K, and Mg, respectively. The relative transport of Ca, Na, K, and Mg to ocean with the river runoff is +7.5,–12.3,–22.4, and–2.6%, respectively.  相似文献   
995.
The formation of late‐stage veins can yield valuable information about the movement and composition of fluids during uplift and exhumation of high‐pressure terranes. Albite veins are especially suited to this purpose because they are ubiquitously associated with the greenschist facies overprint in high‐pressure rocks. Albite veins in retrogressed metabasic rocks from high‐pressure ophiolitic units of Alpine Corsica (France) are nearly monomineralic, and have distinct alteration haloes composed of actinolite + epidote + chlorite + albite. Estimated PT conditions of albite vein formation are 478 ± 31 °C and 0.37 ± 0.14 GPa. The PT estimates and petrographic constraints indicate that the albite veins formed after the regional greenschist facies retrogression, in response to continued decompression and exhumation of the terrane. Stable isotope geochemistry of the albite veins, their associated alteration haloes and unaltered hostrocks indicates that the vein‐forming fluid was derived from the ophiolite units and probably from the metabasalts within each ophiolite slice. That the vein‐forming fluid was locally derived means that a viable source of fluid to form the veins was retained in the rocks during high‐pressure metamorphism, indicating that the rocks did not completely dehydrate. This conclusion is supported by the observation of abundant lawsonite at the highest metamorphic grades. Fluids were liberated during retrogression via decompression dehydration reactions such as those that break down hydrous high‐pressure minerals like lawsonite. Albite precipitation into veins is sensitive to the solubility and speciation of Al, which is more pressure sensitive than other factors which might influence albite vein formation such as silica saturation or Na:K fluid ratios. Hydraulic fracturing in response to fluid generation during decompression was probably the main mechanism of vein formation. The associated pressure decrease with fracturing and fluid decompression may also have been sufficient to change the solubility of Al and drive albite precipitation in fracture systems.  相似文献   
996.
Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e., total extraction and tannin extraction) as reducing agents for a rapid, simple and one-step synthesis method of mesoporous silica nanoparticles/iron oxide nanocomposite based on deposition of iron oxide onto mesoporous silica nanoparticles. Mesoporous silica nanoparticles/iron oxide nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray, vibrating sample magnetometer, N2 adsorption and high-resolution transmission electron microscopy. Mesoporous silica nanoparticles/iron oxide nanocomposite was used as a solid adsorbent for removal of lindane pesticide from aqueous solutions. The developed system possesses the advantages of silica as core that include large surface area and advantages of iron oxide (shell) that include the capability to interact with chlorinated compounds and ability to release by using external magnetic field. UV-Vis technique was used as a simple and easy method for monitoring the removal of lindane. Effects of pH and temperature on the removal efficiency of the developed mesoporous silica nanoparticles/iron oxide nanocomposite toward lindane pesticide were also investigated. Fourier transform infrared spectroscopy, high-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of mesoporous silica nanoparticles/iron oxide nanocomposite for sensing and the capture of lindane molecules with high sorption capacity (about 99%) that could develop a new eco-friendly strategy for detection and removal of pesticide and as a promising material for water treatment.  相似文献   
997.
A collection of quartz veinlets with ore mineralization sampled from the dumps of the abandoned pit of the Kirov mine was analyzed with defining the mineral assemblages productive for gold mineralization and determining the composition of the main ore minerals and their typomorphic features, which are used for interpreting the genesis of the mineral associations and the deposit as a whole.  相似文献   
998.
 The kinetics of the dehydroxylation of chrysotile was followed in situ at high temperature using real-time conventional and synchrotron powder diffraction (XRPD). This is the first time kinetics parameters have been calculated for the dehydroxylation of chrysotile. The value of the order of the reaction mechanism calculated using the Avrami model indicates that the rate-limiting step of the reaction is a one-dimensional diffusion with an instantaneous nucleation or a deceleratory rate of nucleation of the reaction product. Hence, the rate-limiting step is the one-dimensional diffusion of the water molecules formed in the interlayer region by direct condensation of two hydrogen atoms and an oxygen atom. The calculated apparent activation energy of the reaction in the temperature range 620–750 °C is 184 kJ mol−1. The diffusion path is along the axis of the fibrils forming the fibers. The amorphous or short-range ordered dehydroxylate of chrysotile is extremely unstable because forsterite readily nucleates in the Mg-rich regions. Moreover, it is less stable than the dehydroxylate of kaolinite, the so-called metakaolinite, which forms mullite at about 950 °C. This difference is interpreted in terms of the different nature of the two ions Mg2+ and Al3+ and their function as glass modifier and glass-forming ion, respectively. Received: 10 April 2002 / Accepted: 7 January 2003 Acknowledgements This work is part of a COFIN project (04 Scienze della Terra, NR 17, 2000) supported by MURST. Dr Dapiaggi is kindly acknowledged for help during the data collection at the Dipartimento di Scienze della Terra, University of Milan.  相似文献   
999.
http://www.sciencedirect.com/science/article/pii/S167498711100079X   总被引:1,自引:0,他引:1  
Lower Paleozoic rocks exposed in various regions of Egypt (south central Sinai, north Eastern Desert and southwest Western Desert), in addition to occurring in the subsurface such as north Western Desert and the Gulf of Suez. The Lower Paleozoic rocks in Egypt include surface and subsurface rock units of formational status. The surface rock units are the Taba, Araba and Naqus formations. The subsurface rock units include the Shifa, Kohla and Basur formations. The Infracambrian Taba Formation has been discovered recently in the outcrops of the south eastern Sinai in the Taba-Ras El-Naqab area. It is missing and/or not recognized in the subsurface. The Taba Formation consists mainly of reddish brown, unfossiliferous gravelly fine-to medium-grained sandstones cemented by kaolinite and have subordinate beds of paleosols. The Cambrian Araba Formation and its subsurface equivalent (the Shifa Formation) are essentially composed of reddish brown, fine-grained laminated sandstone and siltstone with abundant Skolithos and Cruziana sp. In contrast, the Ordovician-Silurian Naqus Formation and its subsurface equivalents (Kohla Formation and Basur Formation) are mainly composed of white, unfossiliferous, cross-bedded, medium- to coarse-grained sandstones with haphazardly distributed pebbles and cobbles. Sedimentological analysis indicates that the Araba Formation and its equivalents were deposited in a marginal-marine environment, whereas the Naqus Formation and its equivalents were laid down in a fluvio-glacial environment. Integrated stratigraphic and sedimentological studies of the Lower Paleozoic rocks permit reconstruction of the paleogeography of Egypt at that time. Egypt has been largely controlled since the Cambrian by the pre-existing structural framework of the pre-Phanerozoic basement rocks inherited from the Late Proterozoic Pan-African event. Additionally, sedimentation processes were controlled during Cambro-Ordovician times by tectonic movements, whereas glacio-eustatic control predominated during the Late Ordovician-Silurian Period. These studies suggest that most areas of Egypt were exposed lands with episodically transgression by epicontinental seas related to the paleo-Tethys. These lands formed a part of a stable subsiding shelf at the northern Gondwana margin.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号