首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   15篇
  国内免费   1篇
测绘学   7篇
大气科学   17篇
地球物理   85篇
地质学   126篇
海洋学   38篇
天文学   125篇
综合类   1篇
自然地理   30篇
  2021年   5篇
  2020年   3篇
  2019年   6篇
  2018年   7篇
  2017年   9篇
  2016年   9篇
  2015年   5篇
  2014年   12篇
  2013年   24篇
  2012年   4篇
  2011年   13篇
  2010年   13篇
  2009年   18篇
  2008年   16篇
  2007年   13篇
  2006年   14篇
  2005年   14篇
  2004年   24篇
  2003年   25篇
  2002年   15篇
  2001年   13篇
  2000年   15篇
  1999年   11篇
  1998年   17篇
  1997年   6篇
  1996年   4篇
  1995年   3篇
  1994年   4篇
  1993年   7篇
  1992年   7篇
  1991年   9篇
  1990年   4篇
  1989年   8篇
  1988年   3篇
  1987年   9篇
  1985年   7篇
  1984年   10篇
  1983年   6篇
  1982年   3篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   6篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   3篇
排序方式: 共有429条查询结果,搜索用时 166 毫秒
221.
A follow-up survey using the Submillimetre High-Angular Resolution Camera (SHARC-II) at 350 μm has been carried out to map the regions around several 850-μm-selected sources from the Submillimetre HAlf Degree Extragalactic Survey (SHADES). These observations probe the infrared (IR) luminosities and hence star formation rates in the largest existing, most robust sample of submillimetre galaxies (SMGs). We measure 350-μm flux densities for 24 850-μm sources, seven of which are detected at ≥2.5σ within a 10 arcsec search radius of the 850-μm positions. When results from the literature are included the total number of 350-μm flux density constraints of SHADES SMGs is 31, with 15 detections. We fit a modified blackbody to the far-IR (FIR) photometry of each SMG, and confirm that typical SMGs are dust-rich  ( M dust≃ 9 × 108 M)  , luminous  ( L FIR≃ 2 × 1012 L)  star-forming galaxies with intrinsic dust temperatures of ≃35 K and star formation rates of  ≃400 M yr−1  . We have measured the temperature distribution of SMGs and find that the underlying distribution is slightly broader than implied by the error bars, and that most SMGs are at 28 K with a few hotter. We also place new constraints on the 350-μm source counts, N 350(>25 mJy) ∼ 200–500 deg−2.  相似文献   
222.
223.
Gas bubbles rising to the sea surface and unusual scattering zones on echo‐sounding records provide evidence for areas of submarine geothermal activity near Whale Island and White Island.  相似文献   
224.
The distribution of galaxy properties in groups and clusters holds important information on galaxy evolution and growth of structure in the Universe. While clusters have received appreciable attention in this regard, the role of groups as fundamental to formation of the present-day galaxy population has remained relatively unaddressed. Here, we present stellar ages, metallicities and α-element abundances derived using Lick indices for 67 spectroscopically confirmed members of the NGC 5044 galaxy group with the aim of shedding light on galaxy evolution in the context of the group environment.
We find that galaxies in the NGC 5044 group show evidence for a strong relationship between stellar mass and metallicity, consistent with their counterparts in both higher and lower mass groups and clusters. Galaxies show no clear trend of age or α-element abundance with mass, but these data form a tight sequence when fitted simultaneously in age, metallicity and stellar mass. In the context of the group environment, our data support the tidal disruption of low-mass galaxies at small group-centric radii, as evident from an apparent lack of galaxies below  ∼109 M  within ∼100 kpc of the brightest group galaxy. Using a joint analysis of absorption- and emission-line metallicities, we are able to show that the star-forming galaxy population in the NGC 5044 group appears to require gas removal to explain the ∼1.5 dex offset between absorption- and emission-line metallicities observed in some cases. A comparison with other stellar population properties suggests that this gas removal is dominated by galaxy interactions with the hot intragroup medium.  相似文献   
225.
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss–Hermite coefficients h 3 and h 4) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps.
Here we present data for five nearby early-type galaxies to ∼three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line.  相似文献   
226.
Damage surrounding the core of faults is represented by deformation on a range of scales from microfracturing of the rock matrix to macroscopic fracture networks. The spatial distribution and geometric characterization of damage at various scales can help to predict fault growth processes, subsequent mechanics, bulk hydraulic and seismological properties of a fault zone. Within the excellently exposed Atacama fault system, northern Chile, micro- and macroscale fracture densities and orientation surrounding strike-slip faults with well-constrained displacements ranging over nearly 5 orders of magnitude (0.12 m–5000 m) have been analyzed. Faults have been studied that cut granodiorite and have been passively exhumed from 6 to 10 km depth. This allows direct comparison of the damage surrounding faults of different displacements. The faults consist of a fault core and associated damage zone. Macrofractures in the damage zone are predominantly shear fractures orientated at high angles to the faults studied. They have a reasonably well-defined exponential decrease with distance from the fault core. Microfractures are a combination of open, healed, partially healed and fluid inclusion planes (FIPs). FIPs are the earliest set of fractures and show an exponential decrease in fracture density with perpendicular distance from the fault core. Later microfractures do not show a clear relationship of microfracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement but appear to reach a maximum at a few km displacement. One fault, where damage was characterized on both sides of the fault core shows no damage asymmetry. All faults appear to have a critical microfracture density at the fault core/damage zone boundary that is independent of displacement. An empirical relationship for microfracture density distribution with displacement is presented. Preferred FIP orientations have a high angle to the fault close to the fault core and become more diffuse with distance. Models that predict off-fault damage such as a migrating process zone during fault formation, wear from geometrical irregularities and dynamic rupture are all consistent with our data. We conclude it is very difficult to distinguish between them on the basis of field data alone, at least within the limits of this study.  相似文献   
227.
Documenting geographic distribution and spatial linkages between CO2 sources and potential sinks in areas with significant levels of CO2 emissions is important when considering carbon-management strategies such as geologic sequestration or enhanced oil recovery (EOR). For example, the US Gulf Coast overlies a thick succession (>6,000 m [>20,000 ft]) of highly porous and permeable sandstone formations separated by thick, regionally extensive shale aquitards. The Gulf Coast and Permian Basin also have a large potential for EOR, in which CO2 injected into suitable oil reservoirs could be followed by long-term storage of CO2 in nonproductive formations below reservoir intervals. For example, >6 billion barrels (Bbbl) of oil from 182 large reservoirs is technically recoverable in the Permian Basin as a result of miscible-CO2 flooding. The Gulf Coast also contains an additional 4.5 Bbbl of oil that could be produced by using miscible CO2. Although the CO2 pipeline infrastructure is well-developed in the Permian Basin, east Texas and the Texas Gulf Coast may have a greater long-term potential for deep, permanent storage of CO2 because of thick brine-bearing formations near both major subsurface and point sources of CO2.  相似文献   
228.
Abstract— Mössbauer spectroscopy is a very useful tool for identifying ferric iron weathering products in meteorites because of the capability to quantify the relative amounts of ferric iron in them. Mössbauer measurements were made of 33 Antarctic H chondrites (predominately H5) and two paired Antarctic CR chondrites. The primary goals of this study are to determine if Mössbauer spectroscopy can be used to determine which phases are weathering in Antarctic meteorites and if the relative amounts of ferric iron correlate with terrestrial age. Determining which minerals are weathering in ordinary chondrites appears very difficult due to variations in composition for different ordinary chondrites of the same meteorite class and possible problems in preparing homogeneous samples. The analysis of the two paired CR chondrites appears to indicate that metallic iron is predominately weathering to produce ferric iron for this class of meteorite. No correlation is seen between the relative amounts of ferric iron and terrestrial age for ordinary chondrites. One Antarctic H5 chondrite (ALHA77294) with a short 14C age of 135 ± 200 years from the dating of interior carbonate weathering products does have a relatively low amount of ferric iron, which is consistent with this meteorite being exposed on the surface for a relatively short time.  相似文献   
229.
Summary. A re-examination of methods for including mass conservation in tidal loading shows that the spherical harmonic correction of Farrell is incorrect. The effect of unconserved mass for a nearly ocean-covered earth shows that the proper spherical harmonic expansion of the Newtonian Green function is the average of the internal and external expansions.  相似文献   
230.
The World Ocean Atlas 1998 is used to determine the global field of the meridional density ratio R hy =T/S, where temperature and salinity changes T and S are evaluated along meridians, in and below the mixed layer. The focus of the analysis is the identification of regions where the R hy field matches the values R =2 sometimes suggested as the commonly perceived state of the ocean and R =1, the condition of density compensation. Results are presented through fields of the meridional Turner angle Tu hy =arctan(R hy ) and through histograms of Tu hy for the Pacific, Atlantic and Indian Oceans at the ocean surface and at 300 m depth. At the 300-m depth level, which in the subtropics is representative of conditions in the permanent thermocline, the most frequently encountered values of the meridional density ratio are R hy =3.2 in the North and South Pacific, R hy =2.0 in the South Atlantic and Indian and R hy =1.6 in the North Atlantic Ocean. Conditions in the mixed layer are more variable and show seasonal differences, but R hy =2.0 occurs prominently in all ocean regions during winter and in all regions but the Atlantic during summer. Summer values for the Atlantic Ocean are R hy =3.2 in the Northern Hemisphere and R hy =2.4 in the Southern Hemisphere. Detailed analysis of R hy across the Subtropical Front (STF) confirms the most frequently observed values but shows zonal variation along the front in some oceans. Nearly complete density compensation (R hy =1) in the mixed layer is encountered in the STF of the eastern North Pacific, the eastern South Pacific and the eastern Indian Ocean. The eastern Indian Ocean south of Australia is also the only region where complete density compensation in the STF occurs below the mixed layer.Responsible Editor: Neville Smith AcknowledgementWe thank Dan Rudnick for helpful comments and discussion during the preparation of this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号