首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5888篇
  免费   226篇
  国内免费   90篇
测绘学   208篇
大气科学   569篇
地球物理   1457篇
地质学   2021篇
海洋学   552篇
天文学   761篇
综合类   22篇
自然地理   614篇
  2021年   60篇
  2020年   65篇
  2019年   87篇
  2018年   124篇
  2017年   116篇
  2016年   158篇
  2015年   149篇
  2014年   207篇
  2013年   364篇
  2012年   247篇
  2011年   271篇
  2010年   194篇
  2009年   308篇
  2008年   289篇
  2007年   264篇
  2006年   221篇
  2005年   191篇
  2004年   199篇
  2003年   193篇
  2002年   184篇
  2001年   134篇
  2000年   140篇
  1999年   115篇
  1998年   108篇
  1997年   91篇
  1996年   84篇
  1995年   86篇
  1994年   75篇
  1993年   66篇
  1992年   66篇
  1991年   70篇
  1990年   66篇
  1989年   60篇
  1988年   60篇
  1987年   65篇
  1986年   43篇
  1985年   77篇
  1984年   80篇
  1983年   75篇
  1982年   65篇
  1981年   77篇
  1980年   65篇
  1979年   57篇
  1978年   39篇
  1977年   55篇
  1976年   64篇
  1975年   48篇
  1974年   56篇
  1973年   48篇
  1972年   25篇
排序方式: 共有6204条查询结果,搜索用时 31 毫秒
921.
Carbon isotopic exchange between graphite and three polymorphs of CaCO3 was investigated at temperatures of 600-1400 °C and at pressures from 1.4 to 2.3 GPa. Fractionation factors at all temperatures were determined by the partial exchange treatment of Northrop and Clayton (1966).Graphite starting material for the majority of the experiments was milled in water for 20-25 h, producing aggregates of nanosheets. The sheets range in width from 50 to 1000 nm and in thickness from 20 to 30 nm, and they retain hexagonal symmetry.Isotopic exchange appears to be the sum of surface exchange and interior exchange. At 1100-1400 °C, interior exchange exceeded surface exchange, probably by a combination of grain growth, as determined by increase in crystallite size, recrystallization, as observed in FESEM images, and diffusion. In some runs at 1200 and 1400 °C with an isotopic contrast between the initial graphite and calcite of close to 50‰, equilibrium fractionation was actually overstepped due to a kinetic effect. A weighted regression of fractionation factors from the high-temperature runs yields the line of equilibrium interior exchange:
  相似文献   
922.

Discussion

Paleoproterozoic Boninite-Like Rocks in an Intracratonic Setting from Northern Bastar Craton, Central India by D.V. Subba Rao, V. Balaram, K. Naga Raju and D.N. Sridhar. Jour. Geol. Soc. India, v.72, 2008, pp.373–380  相似文献   
923.
The Qilian Orogen of north western China records mid-Paleozoic collisional suturing of arc and continental blocks onto the south western margin of the North China craton. Silurian strata from the retroarc foreland basin mark the transition from ocean closure and northward subduction to the initiation of collision suturing. Detrital zircons were analysed from the western and eastern parts of the basin and show a spectrum of ages from Archean to Paleozoic with major age concentrations at around 2.5 Ga, 1.6 Ga, 1.2 Ga, 0.98 Ga, 0.7 Ga and 0.45 Ga. Archean age grains are derived from the North China craton, whereas the Central Qilian Bloc, which lies to the south provides the likely source for the bulk of the Proterozoic detritus. Paleozoic grains are restricted to Early Silurian samples from the western part of the basin and are considered to have been derived from the magmatic arc related to ocean closure and ultimate collision of the Central Qilian Belt with the North China craton.  相似文献   
924.
925.
At least three sets of moraines mark distinct glacial stands since the last glacial maximum (LGM) in the Three Sisters region of the Oregon Cascade Range. The oldest stand predates 8.1 ka (defined here as post-LGM), followed by a second between ∼ 2 and 8 ka (Neoglacial) and a third from the Little Ice Age (LIA) advance of the last 300 years. The post-LGM equilibrium line altitudes were 260 ± 100 m lower than that of modern glaciers, requiring 23 ± 9% increased winter snowfall and 1.4 ± 0.5°C cooler summer temperatures than at present. The LIA advance had equilibrium line altitudes 110 ± 40 m lower than at present, implying 10 ± 4% greater winter snowfall and 0.6 ± 0.2°C cooler summer temperatures.  相似文献   
926.
Geologic sequestration in deep unmineable coal seams and enhanced coalbed methane production is a promising choice, economically and environmentally, to reduce anthropogenic gases such as carbon dioxide in the atmosphere. Unmineable coal seams are typically known to adsorb large amounts of carbon dioxide in comparison to the sizeable amounts of sorbed methane, which raises the potential for large scale sequestration projects. During the process of sequestration, carbon dioxide is injected into the coalbed and desorbed methane is produced. The coal matrix is believed to shrink when a gas is desorbed and swell when a gas is sorbed, sometimes causing profound changes in the cleat porosity and permeability of the coal seam. These changes may have significant impact on the reservoir performance. Therefore, it is necessary to understand the combined influence of swelling and shrinkage, and geomechanical properties including elastic modulus, cleat porosity, and permeability of the reservoir.The present paper deals with the influence of swelling and shrinkage on the reservoir performance, and the geomechanical response of the reservoir system during the process of geologic sequestration of carbon dioxide and enhanced coalbed methane production in an actual field project located in northern New Mexico. A three-dimensional swelling and shrinkage model was developed and implemented into an existing reservoir model to understand the influence of geomechanical parameters, as well as swelling and shrinkage properties, on the reservoir performance. Numerical results obtained from the modified simulator were compared to available measured values from that site and previous studies. Results show that swelling and shrinkage, and the combination of geomechanical and operational parameters, have a significant influence on the performance of the reservoir system.  相似文献   
927.
Latest Pleistocene and Holocene glacier variations in the European Alps   总被引:1,自引:0,他引:1  
In the Alps, climatic conditions reflected in glacier and rock glacier activity in the earliest Holocene show a strong affinity to conditions in the latest Pleistocene (Younger Dryas). Glacier advances in the Alps related to Younger Dryas cooling led to the deposition of Egesen stadial moraines. Egesen stadial moraines can be divided into three or in some cases even more phases (sub-stadials). Moraines of the earliest and most extended advance, the Egesen maximum, stabilized at 12.2 ± 1.0 ka based on 10Be exposure dating at the Schönferwall (Tyrol, Austria) and the Julier Pass-outer moraine (Switzerland). Final stabilization of moraines at the end of the Egesen stadial was at 11.3 ± 0.9 ka as shown by 10Be data from four sites across the Alps. From west to east the sites are Piano del Praiet (northwestern Italy), Grosser Aletschgletscher (central Switzerland), Julier Pass-inner moraine (eastern Switzerland), and Val Viola (northeastern Italy). There is excellent agreement of the 10Be ages from the four sites. In the earliest Holocene, glaciers in the northernmost mountain ranges advanced at around 10.8 ± 1.1 ka as shown by 10Be data from the Kartell site (northern Tyrol, Austria). In more sheltered, drier regions rock glacier activity dominated as shown, for example, at Julier Pass and Larstig valley (Tyrol, Austria). New 10Be dates presented here for two rock glaciers in Larstig valley indicate final stabilization no later than 10.5 ± 0.8 ka. Based on this data, we conclude the earliest Holocene (between 11.6 and about 10.5 ka) was still strongly affected by the cold climatic conditions of the Younger Dryas and the Preboreal oscillation, with the intervening warming phase having had the effect of rapid downwasting of Egesen glaciers. At or slightly before 10.5 ka rapid shrinkage of glaciers to a size smaller than their late 20th century size reflects markedly warmer and possibly also drier climate. Between about 10.5 ka and 3.3 ka conditions in the Alps were not conducive to significant glacier expansion except possibly during rare brief intervals. Past tree-line data from Kaunertal (Tyrol, Austria) in concert with radiocarbon and dendrochronologically dated wood fragments found recently in the glacier forefields in both the Swiss and Austrian Alps points to long periods during the Holocene when glaciers were smaller than they were during the late 20th century. Equilibrium line altitudes (ELA) were about 200 m higher than they are today and about 300 m higher in comparison to Little Ice Age (LIA) ELAs. The Larstig rock glacier site we dated with 10Be is the type area for a postulated mid-Holocene cold period called the Larstig oscillation (presumed age about 7.0 ka). Our data point to final stabilization of those rock glaciers in the earliest Holocene and not in the middle Holocene. The combined data indicate there was no time window in the middle Holocene long enough for rock glaciers of the size and at the elevation of the Larstig site to have formed. During the short infrequent cold oscillations between 10.5 and 3.3 ka small glaciers (less than several km2) may have advanced to close to their LIA dimensions. Overall, the cold periods were just too short for large glaciers to advance. After 3.3 ka, climate conditions became generally colder and warm periods were brief and less frequent. Large glaciers (for example Grosser Aletschgletscher) advanced markedly at 3.0–2.6 ka, around 600 AD and during the LIA. Glaciers in the Alps attained their LIA maximum extents in the 14th, 17th, and 19th centuries, with most reaching their greatest LIA extent in the final 1850/1860 AD advance.  相似文献   
928.
Two hypotheses have been proposed to explain the origin of marine isotope stage (MIS) 11 deposits in small Bermudian caves at +21 m above modern sea level: (1) a +21 m MIS 11 eustatic sea-level highstand, and (2) a MIS 11 mega-tsunami event. Importantly, the foraminifera reported in these caves have yet to be critically evaluated within a framework of coastal cave environments. After statistically comparing foraminifera in modern Bermudian littoral caves and the MIS 11 Calonectris Pocket A (+21 m cave) to the largest available database of Bermudian coastal foraminifera, the assemblages found in modern littoral caves – and Calonectris Pocket A – cannot be statistically differentiated from lagoons. This observation is expected considering littoral caves are simply sheltered extensions of a lagoon environment in the littoral zone, where typical coastal processes (waves, storms) homogenize and rework lagoonal, reefal, and occasional planktic taxa. Fossil protoconchs of the Bermudian cave stygobite Caecum caverna were also associated with the foraminifera. These results indicate that the MIS 11 Bermudian caves are fossil littoral caves (breached flank margin caves), where the total MIS 11 microfossil assemblage is preserving a signature of coeval sea level at +21 m. Brackish foraminifera (Polysaccammina, Pseudothurammina) and anchialine gastropods (95%, >300 individuals) indicate a brackish anchialine habitat developed in the elevated caves after the prolonged littoral environmental phase. The onset of sea-level regression following the +21 m highstand would first lower the ancient brackish Ghyben-Herzberg lens (<0.5 m) and flood the cave with brackish water, followed by drainage of the cave to create a permanent vadose environment. These interpretations of the MIS 11 microfossils (considering both taphonomy and paleoecology) are congruent with the micropaleontological, hydrogeological and physical mechanisms influencing modern Bermudian coastal cave environments. In conclusion, we reject the mega-tsunami hypothesis, concur with the +21 m MIS 11 eustatic sea-level hypothesis, and reiterate the need to resolve the disparity between global marine isotopic records and the physical geologic evidence for sea level during MIS 11.  相似文献   
929.
Water samples from the Tamar Estuary oxidized manganese when supplemented with Mn2+ (2 mgl−1). The rates of oxidation were depressed in the presence of various metabolic inhibitors. The effect of Mn2+ and temperature on the rate of manganese oxidation suggested that a biological process was largely responsible for converting Mn2+ to Mn4+. Rates of manganese oxidation were much higher in freshwater (3·32 μgl−1 h−1 in water containing 30 mgl−1 of suspended matter) than in saline water (0·7 μgl−1 h−1 in water of salinity 32‰) containing the same amount of particulate matter. The rate of manganese oxidation was proportional to the particulate load (up to 100 mgl−1 particulates).  相似文献   
930.
Solar flares occur due to the sudden release of energy stored in active-region magnetic fields. To date, the precursors to flaring are still not fully understood, although there is evidence that flaring is related to changes in the topology or complexity of an active-region’s magnetic field. Here, the evolution of the magnetic field in active region NOAA 10953 was examined using Hinode/SOT-SP data over a period of 12 hours leading up to and after a GOES B1.0 flare. A number of magnetic-field properties and low-order aspects of magnetic-field topology were extracted from two flux regions that exhibited increased Ca ii H emission during the flare. Pre-flare increases in vertical field strength, vertical current density, and inclination angle of ≈ 8° toward the vertical were observed in flux elements surrounding the primary sunspot. The vertical field strength and current density subsequently decreased in the post-flare state, with the inclination becoming more horizontal by ≈ 7°. This behavior of the field vector may provide a physical basis for future flare-forecasting efforts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号