首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30313篇
  免费   482篇
  国内免费   264篇
测绘学   640篇
大气科学   2843篇
地球物理   6580篇
地质学   11782篇
海洋学   2058篇
天文学   5405篇
综合类   41篇
自然地理   1710篇
  2018年   291篇
  2017年   269篇
  2016年   419篇
  2015年   305篇
  2014年   429篇
  2013年   1235篇
  2012年   519篇
  2011年   794篇
  2010年   651篇
  2009年   921篇
  2008年   844篇
  2007年   805篇
  2006年   846篇
  2005年   734篇
  2004年   764篇
  2003年   721篇
  2002年   725篇
  2001年   598篇
  2000年   612篇
  1999年   584篇
  1998年   577篇
  1997年   598篇
  1996年   533篇
  1995年   498篇
  1994年   476篇
  1993年   463篇
  1992年   515篇
  1991年   472篇
  1990年   509篇
  1989年   430篇
  1988年   468篇
  1987年   540篇
  1986年   447篇
  1985年   585篇
  1984年   667篇
  1983年   680篇
  1982年   596篇
  1981年   589篇
  1980年   581篇
  1979年   552篇
  1978年   547篇
  1977年   491篇
  1976年   480篇
  1975年   467篇
  1974年   494篇
  1973年   496篇
  1972年   350篇
  1971年   310篇
  1970年   250篇
  1968年   231篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
891.
The age and thermal history of Cerro Rico de Potosi, Bolivia   总被引:1,自引:0,他引:1  
 Cerro Rico de Potosi, Bolivia, is the world’s largest silver deposit and has been mined since the sixteenth century for silver, and for tin and zinc during the twentieth century, together with by-product copper and lead. The deposit consists primarily of veins that cut an altered igneous body that we interpret to be a dacitic volcanic dome and its underlying tuff ring and explosion breccia. The deposit is compositionally and thermally zoned, having a core of cassiterite, wolframite, bismuthinite, and arsenopyrite surrounded by a peripheral, lower-temperature mineral assemblage consisting principally of sphalerite, galena, lead sulfosalt, and silver minerals. The low-temperature assemblage also was superimposed on the high-temperature assemblage in response to cooling of the main hydrothermal system. Both the dacite dome and the ore fluids were derived from a larger magmatic/hydrothermal source at depth. The dome was repeatedly fractured by recurrent movement on the fault system that guided its initial emplacement. The dome was extruded at 13.8±0.2 Ma (2σ), based on U-Th-Pb dating of zircon. Mineralization and alteration occurred within about 0.3 my of dome emplacement, as indicated by a 40Ar/39Ar date of 13.76±0.10 Ma (1σ) for sericite from the pervasive quartz-sericite-pyrite alteration associated with the main-stage, high-temperature, mineralization. The last thermal event able to reset zircon fission tracks occurred no later than 12.5±1.1 Ma (1σ), as indicated by fission-tract dating. Minor sericite, and magmatic-steam alunite veins, were episodically formed around 11 Ma and between 8.3 and 5.7 Ma; the younger episodes occurring at the time of extensional fracturing at Cerro Rico and widespread volcanism in the adjacent Los Frailes volcanic field. None of these younger events appear to be significant thermal/mineralizing events; the exceptionally flat thermal release pattern of 39Ar from sericite and the results of the fission-tract dating of zircon show that none of the younger events was hot enough, and lasted long enough, to cause significant loss of Ar or annealing of zircon fission tracks. U-Th-Pb dating of zircon cores indicates a Precambrian progenitor for some zircons, and REE analyses of dated samples of hydrothermally altered dacite show the presence of a prominent positive Eu anomaly, which constrains interpretations of the origin and evolution of the magmatic/hydrothermal system. Received: 14 October 1995/Accepted: 29 January 1996  相似文献   
892.
 Apatite is a relatively common accessory mineral in the olivine-bearing zones (OB-III and OB-IV) of the Middle Banded series of the Stillwater complex, occurring interstitial to cumulus grains, as monomineralic inclusions in cumulus grains, and in polymineralic clusters which may or may not be included in the cumulus grains. Eighty-nine of 185 samples examined were found to contain some apatite. The F-Cl-OH content of the apatite show distinct stratigraphic variations. XClAp (mole fraction Cl in apatite) of interstitial apatite increases upsection in both OB-III and OB-IV with average values ranging from 0.15 to 0.85 in OB-III and from 0.03 to 0.60 in OB-IV. XFAp varies inversely with XClApwith average values ranging from 0.00 to 0.70, while XOHAp remains relatively constant near 0.40 or decreases slightly with height. These variations are remarkable given that no appreciable stratigraphic variations in either the major or trace element compositions of any of the cumulus minerals are found in the 800 m of section that comprise OB-III and OB-IV. Within-sample variation of XClAp for samples containing Cl-rich apatite is substantially larger (up to 0.65 XClAp) than for samples with more F-rich apatite (XClAp varies by approximately 0.15). Although interstitial apatite is found throughout OB-III and OB-IV, apatite occurring as monomineralic inclusion in cumulus grains or in polymineralic clusters is almost exclusively found in samples with Cl-rich apatite. The data are best explained by a model involving the degassing of a Cl-rich volatile phase from the crystallizing interstitial liquid. The up-section migration of this fluid resulted in the crystallization of F-rich apatite in the lower portion and progressive Cl-enrichment in the apatite with height. The presence of hornblende-bearing dikes, veins and pegmatoids at the level of maximum Cl-enrichment is consistent with a fluid migration model. Received: 5 October 1995 / Accepted: 19 March 1996  相似文献   
893.
 The beginning of dehydration melting in the tonalite system (biotite-plagioclase-quartz) is investigated in the pressure range of 2–12 kbar. A special method consisting of surrounding a crystal of natural plagioclase (An45) with a biotite-quartz mixture, and observing reactions at the plagioclase margin was employed for precise determination of the solidus for dehydration melting. The beginning of dehydration melting was worked out at 5 kbar for a range of compositions of biotite varying from iron-free phlogopite to iron-rich Ann70, with and without titanium, fluorine and extra aluminium in the biotite. The dehydration melting of phlogopite + plagioclase (An45) + quartz begins between 750 and 770°C at pressures of 2 and 5 kbar, at approximately 740°C at 8 kbar and between 700 and 730°C at 10 kbar. At 12 kbar, the first melts are observed at temperatures as low as 700°C. The data indicate an almost vertical dehydration melting solidus curve at low pressures which bends backward to lower temperatures at higher pressures (> 5 kbar). The new phases observed at pressures ≤ 10 kbar are melt + enstatite + clinopyroxene + potassium feldspar ± amphibole. In addition to these, zoisite was also observed at 12 kbar. With increasing temperature, phlogopite becomes enriched in aluminium and deficient in potassium. Substitution of octahedral magnesium by aluminium and titanium in the phlogopite, as well as substitution of hydroxyl by fluorine, have little effect on the beginning of dehydration melting temperatures in this system. The dehydration melting of biotite (Ann50) + plagioclase (An45) + quartz begins 50°C below that of phlogopite bearing starting composition. Solid reaction products are orthopyroxene + clinopyroxene + potassium feldspar ± amphibole. Epidote was also observed above 8 kbar, and garnet at 12 kbar (750°C). The experiments on the iron-bearing system performed at ≤ 5 kbar were buffered with NiNiO. The f O 2 in high pressure runs lies close to CoCoO. With the substitution of octahedral magnesium and iron by aluminium and titanium, and replacement of hydroxyl by fluorine in biotite, the beginning of dehydration melting temperatures in this system increase up to 780°C at 5 kbar, which is 70°C above the beginning of dehydration melting of the assemblage containing biotite (Ann50) of ideal composition. The dehydration melting at 5 kbar in the more iron-rich Ann70-bearing starting composition begins at 730°C, and in the Ann25-bearing assemblage at 710°C. This indicates that quartz-biotite-plagioclase assemblages with intermediate compositions of biotite (Ann25 and Ann50) melt at lower temperatures as compared to those containing Fe-richer or Mg-richer biotites. This study shows that the dehydration melting of tonalites may begin at considerably lower temperatures than previously thought, especially at high pressures (>5 kbar). Received: 27 December 1995 / Accepted: 7 May 1996  相似文献   
894.
 Mantle peridotites of the Internal Liguride (IL) units (Northern Apennines) constitute a rare example of the depleted lithosphere of the Jurassic Ligurian Tethys. Detailed chemical (ICP-MS and SIMS techniques) and isotopic investigations on very fresh samples have been performed with the major aim to constrain the timing and mechanism of their evolution and to furnish new data for the geodynamic interpretation. The data are also useful to discuss some general geochemical aspects of oceanic-type mantle. The studied samples consist of clinopyroxene-poor spinel lherzolites, showing incipient re-equilibration in the plagioclase-facies stability field. The spinel-facies assemblage records high (asthenospheric) equilibration temperatures (1150–1250° C). Whole rocks, and constituent clinopyroxenes, show a decoupling between severe depletion in highly incompatible elements [light rare earth elements (LREE), Sr, Zr, Na, Ti] and less pronounced depletion in moderate incompatible elements (Ca, Al, Sc, V). Bulk rocks also display a relatively strong M(middle)REE/H(heavy)REE fractionation. These compositional features indicate low-degree (<10%) fractional melting, which presumably started in the garnet stability field, as the most suitable depletion mechanism. In this respect, the IL ultramafics show strong similarity to abyssal peridotites. The Sr and Nd isotopic compositions, determined on carefully handpicked clinopyroxene separates, indicate an extremely depleted signature (87Sr/86Sr=0.702203–0.702285; 143Nd/144Nd=0.513619–0.513775). The Sm/Nd model ages suggest that the IL peridotites melted most likely during Permian times. They could record, therefore, the early upwelling and melting of mid ocean ridge basalt (MORB) type asthenosphere, in response to the onset of extensional mechanisms which led to the opening of the Western Tethys. They subsequently cooled and experienced a composite subsolidus evolution testified by multiple episodes of gabbroic intrusions and HT-LP retrograde metamorphic re-equilibration, prior to their emplacement on the sea floor. The trace element chemistry of IL peridotites also provides useful information about the composition of oceanic-type mantle. The most important feature concerns the occurrence of Sr and Zr negative anomalies (relative to “adjacent” REE) in both clinopyroxenes and bulk rocks. We suggest that such anomalies reflect changes in the relative magnitude of Sr, Zr and REE partition coefficients, depending on the specific melting conditions. Received: 15 February 1995/Accepted: 4 August 1995  相似文献   
895.
Summary Large deformations of surrounding media around tunnels are often encountered during excavations in rocks with squeezing characteristics. These deformations may sometimes continue for a long period of time. Predictions of deformations of tunnels in such grounds are urgently needed, not because of stability concerns, but also of their sevicability. In the present study, the squeezing phenomenon of rock around tunnels and its mechanism and associated factors are first clarified by carefully studying failures of tunnels, and a survey of tunnels in squeezing rocks in Japan is presented and its results are summarised. Then, a practical method is proposed to predic the squeezing potential and deformation of tunnels in squeezing rock and this method has beeen applied to actual tunnelling projects, where squeezing problems were encountered, to check its applicability and validity. Finally, an extension of this method to the time-dependent behaviour of squeezing rocks is given and an application of this method to an actual tunnel is presented.  相似文献   
896.
Dehydration melting of tonalites. Part II. Composition of melts and solids   总被引:6,自引:0,他引:6  
 Dehydration melting of tonalitic compositions (phlogopite or biotite-plagioclase-quartz assemblages) is investigated within a temperature range of 700–1000°C and pressure range of 2–15 kbar. The solid reaction products in the case of the phlogopite-plagioclase(An45)-quartz starting material are enstatite, clinopyroxene and potassium feldspar, with amphiboles occurring occasionally. At 12 kbar, zoisite is observed below 800°C, and garnet at 900°C. The reaction products of dehydration melting of the biotite (Ann50)-plagioclase (An45)-quartz assemblage are melt, orthopyroxene, clinopyroxene, amphibole and potassium feldspar. At pressures > 8 kbar and temperatures below 800°C, epidote is also formed. Almandine-rich garnet appears above 10 kbar at temperatures ≥ 750°C. The composition of melts is granitic to granodioritic, hence showing the importance of dehydration melting of tonalites for the formation of granitic melts and granulitic restites at pressure-temperature conditions within the continental crust. The melt compositions plot close to the cotectic line dividing the liquidus surfaces between quartz and potassium feldspar in the haplogranite system at 5 kbar and a H 2O = 1. The composition of the melts changes with the composition of the starting material, temperature and pressure. With increasing temperature, the melt becomes enriched in Al2O3 and FeO+MgO. Potash in the melt is highest just when biotite disappears. The amount of CaO decreases up to 900°C at 5 kbar whereas at higher temperatures it increases as amphibole, clinopyroxene and more An-component dissolve in the melt. The Na2O content of the melt increases slightly with increase in temperature. The composition of the melt at temperatures > 900°C approaches that of the starting assemblage. The melt fraction varies with composition and proportion of hydrous phases in the starting composition as well as temperature and pressure. With increasing modal biotite from 20 to 30 wt%, the melt proportion increases from 19.8 to 22.3 vol.% (850°C and 5 kbar). With increasing temperature from 800 to 950°C (at 5 kbar), the increase in melt fraction is from 11 to 25.8 vol.%. The effect of pressure on the melt fraction is observed to be relatively small and the melt proportion in the same assemblage decreases at 850°C from 19.8 vol.% at 5 kbar to 15.3 vol.% at 15 kbar. Selected experiments were reversed at 2 and 5 kbar to demonstrate that near equilibrium compositions were obtained in runs of longer duration. Received: 27 December 1995 / Accepted: 7 May 1996  相似文献   
897.
In many environments, landslides preserved in the geologic record can be analyzed to determine the likelihood of seismic triggering. If evidence indicates that a seismic origin is likely for a landslide or group of landslides, and if the landslides can be dated, then a paleo-earthquake can be inferred, and some of its characteristics can be estimated. Such paleoseismic landslide studies thus can help reconstruct the seismic history of a site or region. In regions that contain multiple seismic sources and in regions where surface faulting is absent, paleoseismic ground-failure studies are valuable tools in hazard and risk studies that are more concerned with shaking hazards than with interpretation of the movement histories of individual faults. Paleoseismic landslide analysis involves three steps: (1) identifying a feature as a landslide, (2) dating the landslide, and (3) showing that the landslide was triggered by earthquake shaking. This paper addresses each of these steps and discusses methods for interpreting the results of such studies by reviewing the current state of knowledge of paleoseismic landslide analysis.  相似文献   
898.
Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia   总被引:9,自引:0,他引:9  
The Sputnik kimberlite pipe is a small “satellite” of the larger Mir pipe in central Yakutia (Sakha), Russia. Study of 38 large diamonds (0.7-4.9 carats) showed that nine contain inclusions of the eclogitic paragenesis, while the remainder contain inclusions of the peridotitic paragenesis, or of uncertain paragenesis. The peridotitic inclusion suite comprises olivine, enstatite, Cr-diopside, chromite, Cr-pyrope garnet (both lherzolitic and harzburgitic), ilmenite, Ni-rich sulfide and a Ti-Cr-Fe-Mg-Sr-K phase of the lindsleyite-mathiasite (LIMA) series. The eclogitic inclusion suite comprises omphacite, garnet, Ni-poor sulfide, phlogopite and rutile. Peridotitic ilmenite inclusions have high Mg, Cr and Ni contents and high Nb/Zr ratios; they may be related to metasomatic ilmenites known from peridotite xenoliths in kimberlite. Eclogitic phlogopite is intergrown with omphacite, coexists with garnet, and has an unusually high TiO2 content. Comparison with inclusions in diamonds from Mir shows general similarities, but differences in details of trace-element patterns. Large compositional variations among inclusions of one phase (olivine, garnet, chromite) within single diamonds indicate that the chemical environment of diamond crystallisation changed rapidly relative to diamond growth rates in many cases. P-T conditions of formation were calculated from multiphase inclusions and from trace element geothermobarometry of single inclusions. The geotherm at the time of diamond formation was near a 35 mW/m2 conductive model; that is indistinguishable from the Paleozoic geotherm derived by studies of xenoliths and concentrate minerals from Mir. A range of Ni temperatures between garnet inclusions in single diamonds from both Mir and Sputnik suggests that many of the diamonds grew during thermal events affecting a relatively narrow depth range of the lithosphere, within the diamond stability field. The minor differences between inclusions in Mir and Sputnik may reflect lateral heterogeneity in the upper mantle.  相似文献   
899.
The mineralization of the active hydrothermal JADE field resembles in many aspects the Kuroko-type mineralization. The JADE field is located in a back-arc graben and is associated with a bimodal volcanism. Lead isotope data from igneous rocks, sediments, and ores further emphasize the similarities with the Kuroko ores and suggest that both sediments and volcanic rocks contributed comparable amounts of lead to the deposit. When compared to the sediments, a much larger volume of volcanic rocks must have contributed lead to the deposit, because of the considerably lower lead concentration of volcanic rocks. In contrast to the crustal type lead of the JADE field and the Kuroko-type sulfide deposits the lead isotope signatures of VMS-type deposits at mid-ocean ridges is distinctly different. In the absence of a sedimentary cover it reflects the composition of the mantle source, whereas in the presence of a sedimentary cover it is either a mixture of mantle and sedimentary lead or it may even be completely dominated by the latter. Received: 5 October 1995 / Accepted: 10 May 1996  相似文献   
900.
 A significant proportion of stream sediment yield in North America comes from stream channel and bank erosion. One method used for stream stabilization is the bank installation of timber and stone fish-shelter structures, but there is little evidence for their potential effectiveness. Nine to nineteen years of precise survey data from Coon Creek, Wisconsin, however, show that fish structures enhance sediment deposition along the stream and may retard lateral migration of channels. Such structures have greater utility for sediment control when streams are eroding away a high bank and replacing it with a lower bank. Received: 18 October 1996 · Accepted: 4 February 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号