首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35583篇
  免费   572篇
  国内免费   383篇
测绘学   804篇
大气科学   3663篇
地球物理   7481篇
地质学   13473篇
海洋学   2399篇
天文学   6769篇
综合类   73篇
自然地理   1876篇
  2018年   492篇
  2017年   481篇
  2016年   691篇
  2015年   449篇
  2014年   675篇
  2013年   1449篇
  2012年   750篇
  2011年   1031篇
  2010年   878篇
  2009年   1251篇
  2008年   1061篇
  2007年   948篇
  2006年   1063篇
  2005年   890篇
  2004年   861篇
  2003年   876篇
  2002年   875篇
  2001年   751篇
  2000年   798篇
  1999年   672篇
  1998年   650篇
  1997年   695篇
  1996年   639篇
  1995年   578篇
  1994年   516篇
  1993年   477篇
  1992年   555篇
  1991年   555篇
  1990年   547篇
  1989年   521篇
  1988年   496篇
  1987年   618篇
  1986年   554篇
  1985年   567篇
  1984年   688篇
  1983年   704篇
  1982年   662篇
  1981年   646篇
  1980年   572篇
  1979年   592篇
  1978年   591篇
  1977年   528篇
  1976年   456篇
  1975年   481篇
  1974年   516篇
  1973年   509篇
  1972年   357篇
  1971年   343篇
  1970年   277篇
  1969年   220篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
Composite granite–quartz veins occur in retrogressed ultrahigh pressure (UHP) eclogite enclosed in gneiss at General's Hill in the central Sulu belt, eastern China. The granite in the veins has a high‐pressure (HP) mineral assemblage of dominantly quartz+phengite+allanite/epidote+garnet that yields pressures of 2.5–2.1 GPa (Si‐in‐phengite barometry) and temperatures of 850–780°C (Ti‐in‐zircon thermometry) at 2.5 GPa (~20°C lower at 2.1 GPa). Zircon overgrowths on inherited cores and new grains of zircon from both components of the composite veins crystallized at c. 221 Ma. This age overlaps the timing of HP retrograde recrystallization dated at 225–215 Ma from multiple localities in the Sulu belt, consistent with the HP conditions retrieved from the granite. The εHf(t) values of new zircon from both components of the composite veins and the Sr–Nd isotope compositions of the granite consistently lie between values for gneiss and eclogite, whereas δ18O values of new zircon are similar in the veins and the crustal rocks. These data are consistent with zircon growth from a blended fluid generated internally within the gneiss and the eclogite, without any ingress of fluid from an external source. However, at the peak metamorphic pressure, which could have reached 7 GPa, the rocks were likely fluid absent. During initial exhumation under UHP conditions, exsolution of H2O from nominally anhydrous minerals generated a grain boundary supercritical fluid in both gneiss and eclogite. As exhumation progressed, the volume of fluid increased allowing it to migrate by diffusing porous flow from grain boundaries into channels and drain from the dominant gneiss through the subordinate eclogite. This produced a blended fluid intermediate in its isotope composition between the two end‐members, as recorded by the composite veins. During exhumation from UHP (coesite) eclogite to HP (quartz) eclogite facies conditions, the supercritical fluid evolved by dissolution of the silicate mineral matrix, becoming increasingly solute‐rich, more ‘granitic’ and more viscous until it became trapped. As crystallization began by diffusive loss of H2O to the host eclogite concomitant with ongoing exhumation of the crust, the trapped supercritical fluid intersected the solvus for the granite–H2O system, allowing phase separation and formation of the composite granite–quartz veins. Subsequently, during the transition from HP eclogite to amphibolite facies conditions, minor phengite breakdown melting is recorded in both the granite and the gneiss by K‐feldspar+plagioclase+biotite aggregates located around phengite and by K‐feldspar veinlets along grain boundaries. Phase equilibria modelling of the granite indicates that this late‐stage melting records P–T conditions towards the end of the exhumation, with the subsolidus assemblage yielding 0.7–1.1 GPa at <670°C. Thus, the composite granite–quartz veins represent a rare example of a natural system recording how the fluid phase evolved during exhumation of continental crust. The successive availability of different fluid phases attending retrograde metamorphism from UHP eclogite to amphibolite facies conditions will affect the transport of trace elements through the continental crust and the role of these fluids as metasomatic agents interacting with the mantle wedge in the subduction channel.  相似文献   
993.
994.
The estimation of wave transmission across the fractured rock masses is of great importance for rock engineers to assess the stability of rock slopes in open pit mines. Presence of fault, as a major discontinuity, in the jointed rock mass can significantly impact on the peak particle velocity and transmission of blast waves, particularly where a fault contains a thick infilling with weak mechanical properties. This paper aims to study the effect of fault properties on transmission of blasting waves using the distinct element method. First, a validation study was carried out on the wave transmission across a single joint and different rock mediums through undertaking a comparative study against analytical models. Then, the transmission of blast wave across a fault with thick infilling in the Golgohar iron mine, Iran, was numerically studied, and the results were compared with the field measurements. The blast wave was numerically simulated using a hybrid finite element and finite difference code which then the outcome was used as the input for the distinct element method analysis. The measured uplift of hanging wall, as a result of wave transmission across the fault, in the numerical model agrees well with the recorded field measurement. Finally, the validated numerical model was used to study the effect of fault properties on wave transmission. It was found that the fault inclination angle is the most effective parameter on the peak particle velocity and uplift. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
995.
Microlites (minute spherulitic, dendritic, skeletal, acicular and poikilitic crystals) diagnostic of crystallization in quenched melt or glass in fault rocks have been used to infer fossil earthquakes. High‐P microlites and crystallites are described here in a variably eclogitized gabbro, the wallrock to the coesite‐bearing eclogite breccia at Yangkou in the Chinese Su‐Lu high‐P metamorphic belt. The studied hand specimens are free of discernible shear deformation, although microfractures are not uncommon under the microscope. In the least eclogitized gabbro, the metagabbro, stellate growths of high‐P minerals on the relict igneous minerals are common. Dendritic garnet crystals (<1?5 μm) grew around rutile and/or phengite replacing ilmenite and biotite, respectively. Skeletal garnet also rims broken flakes of igneous biotite and mechanically twinned augite. Radial intergrowths of omphacite and quartz developed around relict igneous orthopyroxene and are rimmed by skeletal or poikilitic garnet where a Ti‐bearing mineral relict is present. Acicular epidote, kyanite and phengite crystallites are randomly distributed in a matrix of Na‐rich plagioclase, forming the pseudomorphs after igneous plagioclase. In the more eclogitized gabbro, the coronitic eclogite located closer to the eclogite breccia, all the igneous minerals broke down into high‐P assemblages. Thick coronas of poikilitic garnet grew between the pseudomorphs after igneous plagioclase and ferromagnesian minerals. The igneous plagioclase is replaced by omphacite crystallites, with minor amounts of phengite and kyanite. Thermodynamic modelling of the plagioclase pseudomorphs shows an increase in P–T in the wallrock from the metagabbro to the coronitic eclogite, and the P–T variation is unrelated to H2O content. The fluid‐poor pressure overstepping scenario is unsupported both by phase diagram modelling and by whole‐rock chemical data, which show that the various types of eclogitized gabbro are all fairly dry. A large pressure difference of >2 GPa between the metagabbro and the coesite‐bearing eclogites ~20 m apart cannot be explained by the subduction hypothesis because this would require a depth difference of >60 km. The microlites and crystallites are evidence for dynamic crystallization due to rapid cooling because constitutional supercooling was unlikely for the plagioclase pseudomorphs. The lack of annealing of the broken biotite and augite overgrown by strain free skeletal garnet is consistent with a transient high‐P–T event at a low ambient temperature (<300 °C), probably in the crust. Therefore, the eclogitization of the wallrock to the eclogite breccia was also coseismic, as proposed earlier for the eclogite facies fault rocks. The outcrop‐scale P–T variation and the transient nature of the high‐P–T event are inconsistent with the other existing tectonic models for high‐P metamorphism. The fact that the less refractory but denser biotite is largely preserved while the more refractory but less dense plagioclase broke down completely into high‐P microlite assemblages in the metagabbro indicates a significant rise in pressure rather than temperature. Given that the metamorphic temperatures are far below the melting temperatures of most of the gabbroic minerals under fluid‐absent conditions, stress‐induced amorphization appears to be the more likely mechanism of the coseismic high‐P metamorphism.  相似文献   
996.
997.
Soil water repellency is a widespread phenomenon with the capacity to alter hydrological and geomorphological processes. Water repellency decays with time, and the consequences are only of concern during the timescale at which the water repellency persists. This study aimed to characterize the influence of temperature and humidity on the breakdown of water repellency. Apparent contact angle measurements were carried out on samples consisting of sand treated with stearic acid as well as naturally repellent dune sands and composts. Temperature and humidity were controlled using a cooled incubator and a purpose designed enclosed box in which humidity could be raised or lowered. Results showed the contact angle of the stearic‐acid‐treated sands decayed with time and that there was a significant increase with stearic acid concentration. For all samples, the decay in apparent contact angle could be described with a continuous breakdown model. The stearic‐acid‐treated sands showed a significant increase in contact angle with relative humidity at a temperature of 10 and 20 °C. These differences diminished with increasing temperature. Similar results were seen for the dune sands and composts. Despite the influence of temperature and humidity on contact angles, there was no significant change in the rate at which the contact angle decayed in any sample. Absolute humidity was found to provide a more relevant indicator than relative humidity when assessing the influence of humidity on repellency over a range of temperatures. The contact angle initially increased with absolute humidity before plateauing owing to the confounding effect of temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
998.
999.
1000.
The relative importance of climate, forest fires and human population size on long‐term boreal forest composition were statistically investigated at regional and local scales in Fennoscandia. We employ pollen data from lakes, reflecting regional vegetation, and small forest hollows, reflecting local vegetation, from Russia, Finland and Sweden to reconstruct the long‐term forest composition. As potential drivers of the Holocene forest dynamics we consider climate, generated from a climate model and oxygen isotope data, past forest fires generated from sedimentary charcoal data and human population size derived from radiocarbon dated archaeological findings. We apply the statistical method of variation partitioning to assess the relative importance of these environmental variables on long‐term boreal forest composition. The results show that climate is the main driver of the changes in Holocene boreal forest composition at the regional scale. However, at the local scale the role of climate is relatively small. In general, the importance of forest fires is low both at regional and local scales. The fact that both climate and forest fires explain relatively small proportions of variation in long‐term boreal vegetation in small forest hollow records demonstrates the complexity of factors affecting stand‐scale forest dynamics. The relative importance of human population size was low in both the prehistorical and the historical time periods. However, this is the first time that this type of data has been used to statistically assess the importance of human population size on boreal vegetation and the spatial representativeness of the data may cause bias to the analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号