首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1305篇
  免费   39篇
  国内免费   4篇
测绘学   28篇
大气科学   63篇
地球物理   324篇
地质学   377篇
海洋学   106篇
天文学   228篇
综合类   2篇
自然地理   220篇
  2021年   7篇
  2020年   11篇
  2019年   11篇
  2018年   22篇
  2017年   17篇
  2016年   21篇
  2015年   28篇
  2014年   36篇
  2013年   66篇
  2012年   26篇
  2011年   46篇
  2010年   46篇
  2009年   54篇
  2008年   59篇
  2007年   67篇
  2006年   52篇
  2005年   41篇
  2004年   52篇
  2003年   47篇
  2002年   39篇
  2001年   30篇
  2000年   37篇
  1999年   18篇
  1998年   23篇
  1997年   32篇
  1996年   23篇
  1995年   25篇
  1994年   12篇
  1993年   22篇
  1992年   24篇
  1991年   27篇
  1990年   19篇
  1989年   15篇
  1988年   10篇
  1987年   12篇
  1986年   17篇
  1985年   19篇
  1984年   22篇
  1983年   17篇
  1982年   19篇
  1981年   17篇
  1980年   18篇
  1979年   12篇
  1978年   16篇
  1977年   21篇
  1976年   12篇
  1975年   15篇
  1974年   13篇
  1973年   13篇
  1972年   8篇
排序方式: 共有1348条查询结果,搜索用时 31 毫秒
91.
Organic-rich samples derived from a Middle Cambrian Formation in the Georgina Basin, and from the Middle Proterozoic of the McArthur Basin in northern and central Australia, yielded alginite ranging from immature oil shale material to overmature residue. A maturation scale has been developed based on the thermal evolution of alginite as determined from reflectance and fluorescence. The coalification path of alginite is marked by jumps in contrast to the linear path of wood-derived vitrinite. Six zones have been recognised, ranging from undermature (zone I), through the mature (zones II/III), followed by a stable stage of no change (zone IV) to the overmature (zones V and VI). The onset of oil generation in alginite as evident from the present study is at 0.3% Ro Alg. and is expressed in a change of fluorescence from yellow to brown, and a coalification jump from 0.3 to 0.6% Ro of Alg. In many boreholes zone III can be distinguished between 0.6 and 0.8% Ro of Alg. where subsequent oil generation occurs. Zones II and III represent the oil window.A zone of little or no change designated zone IV, at of alginite follows zones II/III. A marked coalification jump characterises zone V, where a pronounced change in reflectance occurs to >1.0% Ro Alg., signifying peak gas generation. The border of oil preservation lies at the transition of zone V and VI, at 1.6% Ro Alg. In zone VI gas generation only occurs.Comparison of reflectance results with experimental and geochemical pyrolysis data supports high activation energies for hydrocarbon generation from alginite, and therefore a later onset of oil generation than other liptinite macerals (i.e. cutinite, exinite, resinite) as well as a narrow oil window.Transmission electron microscopy (TEM) confirms that alginite does not go through a distinct intermediate stage but that the percentage of unreacted organic matter decreases as maturation proceeds. A clear distinction can be made in TEM between immature alginite, alginite after oil generation, and alginite residue following gas generation. Alginite beyond 1.6% Ro acquires very high densities and the appearance of inertinite in TEM.Bitumens/pyrobitumens make a pronounced contribution to the organic matter throughout the basins and have been shown to effect pyrolysis results by suppressing Tmax. The bitumens/pyrobitumens have been divided into four groups, based on their reflectance and morphology, which in turn appears to be an expression of their genetic history. Their significance is in aiding the understanding of the basins' thermal history, and the timing of oil and gas generation.  相似文献   
92.
93.
In this paper, three-dimensional linear force-free field configurations that can be associated with filaments are considered. It is assumed that the field configurations are suitable to represent filaments if they contain magnetic dips. With the photospheric flux distribution chosen to be an arcade with a dextral/sinistral axial component, it is found that dipped configurations exist only for large values of alpha (where, ×B=B). The dips always lie above the polarity inversion line in the centre of the channel between the flux regions. When the dips are viewed from above to a depth of 1 Mm they resemble closely the shape of filaments viewed in absorption on the solar disk. As the magnitude of alpha increases, the horizontal and vertical extent of the dips also increases, giving active-region filaments for low values of alpha and quiescient filaments for high values of alpha. Dextral filaments only form for negative values of alpha and sinistral filaments for positive values of alpha. The portion of the field line that is dipped is always of inverse polarity and the magnitude of the field in the dipped region increases with height, both of which are consistent with Leroy, Bommier, and Sahal-Bréchot (1983). Overlying the region of dips there are arcades of normal polarity which have the correct left-bearing/right-bearing orientation for dextral/sinistral filaments. When the hypothesis of barbs occurring in dipped field lines is used, barbs that branch out of the main axis and to the right/left for dextral/sinistral filaments can be formed around minority polarity elements on either side of the polarity inversion line. No barbs are found around normal polarity elements. The model reproduces many of the observed features of filament channels, filaments and their barbs.  相似文献   
94.
The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow. At least two and possible three parent magmas can be identified from the samples of the quartz normative group on the basis of their concentration ratios of Sm to Eu. Within each group, the compositions of the samples appear to be related by crystallization of olivine or pyroxene. Significant variations of the ratio of concentration of Sm to Eu cannot be produced without plagioclase-liquid equilibrium. The source material of mare basalt may be depleted in Eu. Alternatively, the magmas may have assimilated a small volume of material similar to KREEP.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   
95.
Laboratory experiments show that albedoes as low as those on the Moon can be produced by vacuum vitrification and associated chemical fractionation of ordinary terrestrial basaltic material. Vitrification is established as an unequivocal process that can account for the low albedo and apparent local darkening with age of the lunar surface. The spectral reflectance curves of glass powders are significantly different than those of the parent rock mineralogy; thus, the presence of ubiquitous glass in lunar surface material complicates compositional determinations by interpretation of spectral reflectance curves. Vitrification of rocks on the Moon may highly modify the chemical composition of the resulting glass; thus, glass fragments found in lunar fines cannot be assumed to represent bulk parent rock material. Progressive impact vitrification of lunar surface material throughout the Moon's history may have led to a fine-grain, opaque, refractory-rich material we call ultimate glass. This unidentified and, at this point, hypothetical component may exist in dark regolith material; if found, it may be a useful indicator of regolith maturity.Paper dedicated to Prof. Harold C. Urey on the occasion of his 80th birthday on 29 April 1973.  相似文献   
96.
97.
Modeling the effects of atmospheric drag is one of the more important problems associated with the determination of the orbit of a near-earth satellite. Errors in the drag model can lead to significant errors in the determination and prediction of the satellite motion. The uncertainty in the drag acceleration can be attributed to three separate effects: (a) errors in the atmospheric density model, (b) errors in the ballistic coefficient, and (c) errors in the satellite relative velocity. In a number of contemporary satellite missions, the requirements for performing the orbit determination and predictions in near real-time has placed an emphasis on density model computation time as well as the model accuracy. In this investigation, a comparison is made of three contemporary atmospheric density models which are candidates for meeting the current orbit computation requirements. The models considered are the analytic Jacchia-Roberts model, the modified Harris-Priester model, and the USSR Cosmos satellite derived density model. The computational characteristics of each of the models are compared and a modification to the modified Harris-Priester model is proposed which improves its ability to represent the diurnal variation in the atmospheric density.This investigation was supported by the NASA Goddard Spaceflight Center under contract NAS5-20946 and Contract NSG 5154.  相似文献   
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号