首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   4篇
测绘学   3篇
大气科学   6篇
地球物理   21篇
地质学   47篇
海洋学   8篇
天文学   4篇
自然地理   30篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   2篇
  2014年   2篇
  2013年   9篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   13篇
  2007年   3篇
  2006年   7篇
  2005年   4篇
  2004年   4篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1985年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
排序方式: 共有119条查询结果,搜索用时 78 毫秒
81.
A continuous record of insect (Chironomidae) remains preserved in lake sediments is used to infer temperature changes at a small lake in Arctic Canada through the Holocene. Early Holocene summers at the study site were characterized by more thermophilous assemblages and warmer inferred temperatures than today, presumably in response to the positive anomaly in Northern Hemisphere summer insolation. Peak early Holocene warmth was interrupted by two cold reversals between 9.5 and 8 cal ka BP, during which multiple cold-stenothermous chironomid taxa appeared in the lake. The earlier reversal appears to correlate with widespread climate anomalies around 9.2 cal ka BP; the age of the younger reversal is equivocal but it may correlate with the 8.2 cal ka BP cold event documented elsewhere. Widespread, abrupt climate shifts in the early Holocene illustrate the susceptibility of the climate system to perturbations, even during periods of enhanced warmth in the Northern Hemisphere.  相似文献   
82.
The Snake River Plain aquifer in southeast Idaho is hosted in a thick sequence of layered basalts and interbedded sediments. The degree to which the layering impedes vertical flow has not been well understood, yet is a feature that may exert a substantial control on the movement of contaminants. An axial-flow numerical model, RADFLOW, was calibrated to pumping test data collected by a straddle-packer system deployed at 23 depth intervals in four observation wells to evaluate conceptual models and estimate properties of the Snake River Plain aquifer at the Idaho National Engineering and Environmental Laboratory. A delayed water-table response observed in intervals beneath a sediment interbed was best reproduced with a three-layer simulation. The results demonstrate the hydraulic significance of this interbed as a semi-confining layer. Vertical hydraulic conductivity of the sediment interbed was estimated to be about three orders of magnitude less than vertical hydraulic conductivity of the lower basalt and upper basalt units. The numerical model was capable of representing aquifer conceptual models that could not be represented with any single analytical technique. The model proved to be a useful tool for evaluating alternative conceptual models and estimating aquifer properties in this application. Electronic Publication  相似文献   
83.
84.
A secondary flow model for back-arc spreading is developed in this paper that shows some of the characteristics of observed back-arc spreading. Back-arc spreading has formed marginal seas around the west and southwest rim of the Pacific. The episodic spreading and different directions of opening are not completely understood; however, there does appear to be a limited lifetime (< 17 m.y.) and when one episode of spreading ends, there is a lag time (6–10 m.y.) before another adjacent one begins. This suggests that back-arc flow is caused by secondary flow induced by subduction. Simple scaling arguments with physically reasonable values suggest that forced and free convection effects will be nearly equal. A two-dimensional, finite difference model is developed and several numerical experiments lasting 160 m.y. with a varying subduction rate are discussed. These experiments show stress surges lasting 10–20 m.y. and a series of eddies and counter-eddies behind the trench with a spatial scale of 300–400 km. This supports the idea that back-arc spreading is the result of transient eddies induced by the subducting slab.  相似文献   
85.
Growth lines and variation in oxygen and carbon isotope ratios (δ18O and δ13C) in shells of the Pliocene scallop Chesapecten madisonius preserve seasonal chronologies of biological and environmental change. This study evaluated whether (1) prominent growth lines were formed annually, and (2) growth rates estimated using isotope sclerochronology were comparable to rates estimated using visual inspection (measuring the width between external growth lines). We compared both techniques for estimating growth rates and age on three late to mid-Pliocene C. madisonius shells. The first approach located prominent growth lines on the δ18O time series, and differentiated between annual and non-annual (disturbance) growth lines. The second approach assumed all prominent lines were annual. This comparison showed that visual inspection underestimated growth rates and overestimated age. Seasonal timing of annual growth line formation using isotope sclerochronology provided unexpected results. Because this region fell within the warm-temperate paleobiogeographic province, we predicted annual lines formed during summers (most negative δ18O values). Instead, annual growth lines coincided with the most positive δ18O values (winter), typical of bivalves from cold-temperate regions. Moreover, shells recorded seasonal temperatures ranging from 3.2–20.8°C, a range lower than the thermal regime defined for warm-temperate environments (8–25°C). Possibly, the Sea Slope Gyre, which mixed eddies and cold filaments of the Labrador Current and warm waters of the Gulf Stream, penetrated the warm-temperate environment in this region. Alternatively, warm-water fauna from the zoogeographic Carolinian subprovince migrated northward and endured by virtue of warm summer temperatures. Regardless of the explanation, our findings provide a glimpse of mid-latitude seasonal temperature range for a warm climate episode during the mid-Pliocene.  相似文献   
86.
This paper examines the potential for multiple co-benefits to arise through re-establishing the connection between Aboriginal people and their lands. The research project was participatory in its design and implementation, and centred on three short but intensive visits to the Kendall River over a period of 4 years. Interviews with and observations of Kendall River people on country provided qualitative information concerning their wish to reconnect with country, not only to transmit key cultural knowledge through the generations, re-socialise their lands and manage them appropriately but also to help them manage the negative consequences of Wik aggregation in the troubled community of Aurukun. Participants reported that returning to and carrying out activities on country, and the family and country planning resulting from those trips, provided a way to counter feelings of disempowerment and despondency arising from living solely in Aurukun. This paper concludes by arguing that activities that re-engage Aboriginal people with country (if not actually returning to live on country) can serve to build cultural resilience in the face of multiple economic, environmental and social challenges, including those arising from life lived largely in communities such as Aurukun, thereby also likely benefiting their physical and psychosocial health and well-being.  相似文献   
87.
Three estuaries near Naples, Florida with variably modified watersheds have been investigated to understand the chemical consequences of altering drainage patterns. Blackwater River (near natural drainage, control site), Henderson Creek (moderately modified watershed), and Faka-Union Canal (severe channelization) were sampled for temperature, salinity, δ18O, δ13C of dissolved inorganic carbon (DIC), molality of CO2 (ΣCO2), and Mg:Ca and Sr:Ca ratios between freshwater and marine water end members over a 17-mo period. Carbon isotope composition followed similar seasonal patterns as salinity. Freshwater and seawater end members are more negative than the global average, likely reflecting equilibration with local carbon sources derived from mangrove leaf litter and groundwater. δ13C responds to differences in primary productivity between estuaries. Henderson Creek has higher primary productivity than Blackwater River (probable due to higher sewage input and agricultural runoff) and has more positive δ13C and lower ΣCO2. δ18O is affected by seasonal input of freshwater from atmospheric precipitation, evaporation, and groundwater. Late summer and fall rains lower the δ18O of estuarine water, whereas evaporative conditions in the dry season elevate δ18O to values that can be more positive upstream than those from the Gulf of Mexico (estuarine inversion). Evaporation produces water in the Gulf of Mexico that is >1‰ more positive than the global sea surface average most of the year. The very negative δ18O values in Blackwater River and Henderson Creek likely reflect atmospheric and groundwater contribution. Mg:Ca and Sr:Ca ratios of Gulf water from all three estuaries are similar to global averages at low latitudes. Freshwater end members among estuaries are different in that Blackwater River has higher ratios, suggesting a groundwater contribution. Dolomitic rocks in the subsurface likely provide a source of Mg ions.  相似文献   
88.
Roads in rural, upland landscapes are important sources of runoff and sediment to waterways. The downstream effects of these sources should be related to the connectivity of roads to receiving waters. Recent studies have explored this idea, but only simple metrics have been used to characterize connectivity and few studies have quantified the downstream effects of road–stream connectivity on sediment or solute budgets and channel morphology. In this study, we evaluated traditional and newly developed connectivity metrics that utilized features of landscape position and delivery pathway to characterize road–stream connectivity in upland settings. Using data on stream geomorphic conditions developed by the Vermont Agency of Natural Resources (Montpelier, VT), we related road connectivity metrics to channel condition on a set of 101 forested, upland streams with minimal development other than predominantly gravel road networks. Logistic regression indicated that measures of road density, proximity and orientation successfully distinguished among categories of stream geomorphic condition at multiple geographic scales. Discriminant function analysis using a set of inherent channel characteristics combined with road connectivity metrics derived at the reach corridor scale successfully distinguished channel condition for over 70% of the channels evaluated. This research contributes to efforts to evaluate the cumulative downstream effects of roads on stream channels and aquatic resources and provides a new means of watershed assessment to derive metrics that can be used to predict channel condition. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
89.
The effects of oil treatments (one-time addition of 120 ml per plant and weekly addition of 15 ml per plant) and environmental conditions at time of oiling (air conditioned laboratory/diffuse light vs hot, direct sunlight) on the survival and growth of Rhizophora mangle and Avicennia germinans seedlings were examined. No oiled A. germinans survived longer than a few weeks. Both one-time and weekly oiling depressed survival, stem growth, leaf production and maximum leaf size in R. mangle. Significant interaction terms between oil treatment and environmental conditions occurred later (50 and 59 weeks) for R. mangle stem growth and earlier (21 and 23 weeks) for leaf production. Relative to other treatment combinations, R. mangle mortality was greatest and growth lowest in the combination of one-time oiling under hot, bright outdoor conditions. Results indicate that synergistic interactions between oil effects and environmental conditions may contribute to the wide range of effects reported in the literature in studies of oil contamination of mangroves.  相似文献   
90.
Human alteration of land cover (e.g., urban and agricultural land use) and shoreline hardening (e.g., bulkheading and rip rap revetment) are intensifying due to increasing human populations and sea level rise. Fishes and crustaceans that are ecologically and economically valuable to coastal systems may be affected by these changes, but direct links between these stressors and faunal populations have been elusive at large spatial scales. We examined nearshore abundance patterns of 15 common taxa across gradients of urban and agricultural land cover as well as wetland and hardened shoreline in tributary subestuaries of the Chesapeake Bay and Delaware Coastal Bays. We used a comprehensive landscape-scale study design that included 587 sites in 39 subestuaries. Our analyses indicate shoreline hardening has predominantly negative effects on estuarine fauna in water directly adjacent to the hardened shoreline and at the larger system-scale as cumulative hardened shoreline increased in the subestuary. In contrast, abundances of 12 of 15 species increased with the proportion of shoreline comprised of wetlands. Abundances of several species were also significantly related to watershed cropland cover, submerged aquatic vegetation, and total nitrogen, suggesting land-use-mediated effects on prey and refuge habitat. Specifically, abundances of four bottom-oriented species were negatively related to cropland cover, which is correlated with elevated nitrogen and reduced submerged and wetland vegetation in the receiving subestuary. These empirical relationships raise important considerations for conservation and management strategies in coastal environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号