首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   8篇
  国内免费   7篇
测绘学   6篇
大气科学   12篇
地球物理   104篇
地质学   108篇
海洋学   22篇
天文学   92篇
综合类   3篇
自然地理   37篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   8篇
  2015年   5篇
  2014年   11篇
  2013年   11篇
  2012年   9篇
  2011年   11篇
  2010年   12篇
  2009年   17篇
  2008年   13篇
  2007年   24篇
  2006年   14篇
  2005年   23篇
  2004年   8篇
  2003年   13篇
  2002年   21篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   9篇
  1996年   8篇
  1995年   7篇
  1994年   9篇
  1993年   6篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   12篇
  1983年   9篇
  1982年   5篇
  1981年   9篇
  1980年   5篇
  1979年   6篇
  1978年   6篇
  1977年   3篇
  1976年   6篇
  1975年   2篇
  1973年   5篇
  1969年   1篇
  1968年   3篇
排序方式: 共有384条查询结果,搜索用时 15 毫秒
81.
In central Chile, many communities rely on water obtained from small catchments in the coastal mountains. Water security for these communities is most vulnerable during the summer dry season and, from 2010 to 2017, rainfall during the dry season was between 20% and 40% below the long-term average. The rate of decrease in stream flow after a rainfall event is a good measure of the risk of flow decreasing below a critical threshold. This risk of low flow can be quantified using a recession coefficient (α) that is the slope of an exponential decay function relating flow to time since rainfall. A mathematical model was used to estimate the recession coefficient (α) for 142 rainstorm events (64 in summer; 78 in winter) in eight monitored catchments between 2008 and 2017. These catchments all have a similar geology and extend from 35 to 39 degrees of latitude south in the coastal range of south-central Chile. A hierarchical cluster analysis was used to test for differences between the mean value of α for different regions and forest types in winter and summer. The value of α did not differ (p < 0.05) between catchments in winter. Some differences were observed during summer and these were attributed to morphological differences between catchments and, in the northernmost catchments, the effect of land cover (native forest and plantation). Moreover, α for catchments with native forest was similar to those with pine plantations, although there was no difference (p < 0.05) between these and Eucalyptus plantations. The recession constant is a well-established method for understanding the effect of climate and disturbance on low flows and baseflows and can enhance local and regional analyses of hydrological processes. Understanding the recession of flow after rainfall in small headwater catchments, especially during summer, is vital for water resources management in areas where the establishment of plantations has occurred in a drying climate.  相似文献   
82.
83.
We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and long-slit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Mártir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [N  ii ]λ6584 image of Hb 12. We measured from our spectroscopy radial velocities of  ∼120 km s−1  for these knots.
We have derived the inclination angle of the hourglass-shaped nebular shell to be ∼65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula, then both nebula and binary would be expected to share a common inclination angle.
Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in Hα and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.  相似文献   
84.
Charles Maurice  Don Francis 《Lithos》2010,114(1-2):95-108
Paleoproterozoic mafic dyke swarms (2.5–2.0 Ga) of the Ungava Peninsula can be divided in three chemical groups. The main group has a wide range of Fe (10–18 wt.% Fe2O3) and Ti (0.8–2.0 wt.% TiO2) contents, and the most magnesian samples have compositions consistent with melting of a fertile lherzolitic mantle at ~ 1.5 GPa. Dykes of a low-LREE (light rare earth element) subgroup (La/Yb ≤ 4) display decreasing Zr/Nb with increasing La/Yb ratios and positive εNd2.0 Ga values (+ 3.9 to + 0.2) that trend from primitive mantle towards the composition of Paleoproterozoic alkaline rocks. In contrast, dykes of a high-LREE subgroup (La/Yb ≥4) display increasing Zr/Nb ratios and negative εNd2.0 Ga values (? 2.3 to ? 6.4) that trend towards the composition of Archean crust. A low Fe–Ti group has low Fe (< 11 wt.% Fe2O3), Ti (< 0.8 wt.% TiO2), high field strength elements (HFSE; < 6 ppm Nb) and heavy rare earth elements (HREE; < 2 ppm Yb) contents, but are enriched in large ion lithophile elements (LILE; K/Ti = 0.7–3) and LREE (La/Yb > 4). These dykes are interpreted as melts of a depleted harzburgitic mantle that has experienced metasomatic enrichment. A positive correlation of Zr/Nb ratio and La/Yb ratio, negative εNd2.0 Ga values (? 14 to ? 6), and the presence of inherited Archean zircons further suggest the incorporation of a crustal component. A high Fe–Ti group has high Fe (> 14 wt.% Fe2O3) and Ti (> 1.4 wt.% TiO2) contents, along with higher Na contents relative to the main group dykes. Dykes of a high-Al subgroup (> 12 wt.% Al2O3) share Fe contents, εNd2.0 Ga values (? 2.3 to ? 3.4), La/Yb and Th/Nb ratios with Archean ferropicrites, and may represent evolved ferropicrite melts. A low-Al subgroup (< 12 wt.% Al2O3) has relatively lower Yb contents (< 2 ppm) and fractionated HREE patterns that indicate the presence of garnet in their melting residue. A comparison with ~ 5 GPa experimentally-derived melts suggests that these dykes may be derived from garnet-bearing pyroxenite or peridotite. The εNd2.0 Ga values (? 0.3 to ? 2.0) of these dykes lie between the compositions of Archean granitoids and Paleoproterozoic alkaline rocks, signifying their petrogenesis involved both crustal and mantle components.Paleoproterozoic dykes containing a crustal component occur within, or close to, an isotopically enriched Archean terrane (TDM 4.3–3.1 Ga), whereas dykes without this component occur in an isotopically juvenile terrane (TDM < 3.1 Ga). The lack of a crustal component and the positive εNd2.0 Ga values of dykes intruding the latter suggest that the crust they intruded was either too cold to be assimilated, or that its lower crust and/or lithosphere were Paleoproterozoic in age. In contrast, the ubiquitous presence of a crustal component and the diversity of mantle sources for dykes intruding the enriched terrane (lherzolite, harzburgite, pyroxenite) suggest a warmer crust with underlying heterogeneous lithospheric mantle.  相似文献   
85.
Interception loss has an important influence on the water yield of forested areas. Nevertheless, in most studies stemflow is not measured, therefore the question of how to determine the feasibility of optimizing interception and stemflow parameters simultaneously by matching daily simulated throughfall to fortnightly measurements of cumulative throughfall is an important one. By applying a daily empirical interception model, a goodness fit of 2·2 mm/day is obtained between observed and simulated cumulative throughfall. However, by applying the simple but robust Linking Test, it was shown that the parameters are non‐unique and falsely linked, i.e. inter‐relationships between different vegetation parameter sets give similar throughfall but non‐unique net precipitation. The Linking Test investigates the causes of obtaining falsely linked parameters and shows that objective equifinality is not the source of the problem. Objective equifinality occurs when an inappropriate objective function is used. The Linking Test also shows that falsely linked parameters are not caused by measuring throughfall on a non‐daily basis (termed frequency sampling equifinality). By expanding the interception model to the second degree, it was found that the non‐uniqueness is due to the inherent nature of interception and stemflow functions that behave similarly and therefore can easily compensate each other (termed similarity equifinality). It is also shown that a simple daily empirical exponential interception model developed for conifers in the uplands of the United Kingdom is suitable to model interception in Pinus radiata plantations in the Mediterranean climate of southern Australia by using only daily gross precipitation data and two parameters. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
86.
Both Anomalous X-ray Pulsars (AXPs) and Soft Gamma Repeaters (SGRs) are thought to be manifestations of magnetars. However, the specific physical characteristics that differentiate the two classes of objects remain unclear. There is some evidence that the progenitors of these sources and/or the environment in which they form might influence the type of phenomena the resulting magnetar displays. Several of the AXPs appear to be associated with supernova remnants, while embedded clusters of massive stars have been found in the immediate vicinity of some SGRs. Since both AXPs and SGRs are distributed close to the Galactic plane, high extinction makes studies in the optical difficult. We present early results from our Spitzer program aimed at probing the environmental factors that might contribute to the difference in the observed characteristics between AXPs and SGRs.  相似文献   
87.
白建忠  窦金锋 《气象》1995,21(9):7-10
通过分析气象因素对气压式高度表测量高度的影响,求出了高度误差极值,说明了我国安全高度按高于航线两侧25km范围内的最大标高400m或600m存在一定误差,提出了4条预防措施。  相似文献   
88.
Volumetrically subordinate alkaline mafic lava flows form a late capping stage over the earlier felsic lavas that form the shield of the Itcha Volcanic Complex (IVC), of the Anahim Volcanic Belt (AVB) in central British Columbia (B.C.). The mafic capping stage of the IVC is dominated by hawaiites which are the earliest of the mafic lavas, and are succeeded by alkali olivine basalts (AOB) and then by basanites. The alkali olivine basalts can be subdivided into high-, intermediate- and low-MgO AOB groups, all of which share similar HFSE ratios (e.g. Nb/Zr) with the hawaiites. High Al contents and Sr/Zr ratios indicate that hawaiites and Fe-rich evolved AOB were derived from primitive AOB parental magmas by crystal fractionation of a wehrlitic assemblage at pressures on the order of 8 to 10 kbar. High Si and low Fe contents indicate that the majority of the evolved AOB lavas, however, do not represent an intermediate stage in the liquid line of descent to hawaiites, but were most likely produced by gabbroic fractionation from primitive AOB magmas at relatively low pressures. The parental magmas of the majority of these lavas were distinct from those of the observed high-MgO basalts, having higher HFSE contents and being more Si-under-saturated. The high Al, high Sr/Zr signature of high-pressure fractionation of a clinopyroxene-dominated assemblage in the IVC is shared by hawaiites of other alkaline volcanic suites of the Canadian Cordillera, such as the Edziza Volcanic Complex in northern B.C. and appears to be a feature of hawaiites in many localities, including Hawaii and Iceland. Viscosities calculated for both high- and low-pressure crystal fractionation models suggest that aphyric hawaiites are residual liquids escaped from a wehrlitic crystalline network, at elevated pressures, possibly at the base of the crust. Editorial responsibility: T.L. Grove  相似文献   
89.
American Scientist , I think. One panel shows an Einstein-like figure in an easy chair with a pencil and pad of paper; this panel is labeled Big Science. The other panel shows the headquarters of a high-tech company and is labeled Little Science. Think about it. Science builds on testable ideas, often qualitative in nature, that commonly arise from observations of natural phenomena. Technology confirms or denies those ideas and helps to quantify them. Both are important, and there is considerable feedback, but fundamentally the ideas drive the technology. Hence the cartoonist had it right, despite society’s common perception of what is big and what is little. Big bucks do not equal big science. Volcanology is a science, the study of volcanoes. Ideas are key to our understanding of how and why volcanoes erupt. Many of these ideas are formulated from direct observations of volcanoes and their products before, during, and after eruptions. Observational volcanology may seem old-fashioned today but remains one of the most stimulating endeavors I know. If not big science, at least it is moderate science. And rather simple, too. All you need are your eyes, ears, nose, and brain, together with suitable equipment for the situation (often only a hammer or spade). In many instances simple observations and related measurements provide fundamental information about how volcanoes work. I described three such instances in Chapter 21 of USGS Bulletin 1966 and elaborated there my feelings about the importance of field observations for monitoring volcanoes and the concept of keeping monitoring, i.e., repeated direct observation, as simple as practical. I am disheartened by the recent deaths of volcanologists in the field but encouraged by the general understanding that the volcanologic community has shown. No one wants the death rate to continue unchecked, but no one is seriously suggesting cutting back on field observations by volcanologists either. The best way to reduce fatalities is to understand the volcano better. The best way to understand the volcano better involves field observations as well as electronic sensors. Meanwhile, it is well to remember that volcanology is the study of volcanoes, and that purely scientific, curiosity-driven motives are as justified as those designed purely to mitigate risks, and I think more valuable in the end. Curiosity leads to understanding, and understanding is the paramount goal of the science as well as the soundest basis for reducing risk. Volcanologists who are curious will get themselves into trouble and sometimes die because of it. It is often stated that we must weigh the potential benefits and risks before doing something that may be perceived as risky. Of course we must, but it is mathematically impossible to solve one equation with two unknowns, and generally the potential benefits and risks are both unknowns. In the end it comes down to common sense, which varies among individuals and in any case is far from foolproof. Let is be no other way, and let us praise the curious as we mourn the dead.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号